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Abstract

Graphs are an important tool for modeling data in many diverse domains. Re-
cent increases in sensor technology and deployment, the adoption of online ser-
vices, and the scale of VLSI circuits has caused the size of these graphs to
skyrocket. Finding clusters of highly connected vertices within these graphs is
a critical part of their analysis.

In this paper we apply the multilevel paradigm to the modularity graph
clustering problem. We improve upon the state of the art by introducing new
efficient methods for coarsening graphs, creating initial clusterings, and per-
forming local refinement on the resulting clusterings. We establish that for a
graph with n vertices and m edges, these algorithms have an O(m+n) runtime
complexity and an O(m+ n) space complexity, and show that in practice they
are extremely fast. We present shared-memory parallel formulations of these
algorithms to take full advantage of modern architectures, which we show have
a parallel runtime of O(m/p+ n/p+ k), where p is the number of threads and
k is the number of clusters. Finally, we present the product of this research,
the clustering tool Nerstrand1. In serial mode, Nerstrand runs in a fraction of
the time of current methods and produces results of equal quality. When run
in parallel mode, Nerstrand exhibits significant speedup with less than one per-
cent degradation of clustering quality. Nerstrand works well on large graphs,
clustering a graph with over 105 million vertices and 3.3 billion edges in 90
seconds.

1. Introduction

Graphs are an important tool for representing data in many diverse do-
mains. Graph clustering is a technique for analyzing the structure of a graph
by identifying groups of highly connected vertices. Discovering this structure is
an important task in social network, biological network, and web analysis. In
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recent years, the scale of these graphs has increased to millions of vertices and
billions of edges, making this discovery increasingly difficult and costly.

Modularity [1] is one of the most widely used metrics for determining the
quality of non-overlapping graph clusterings, especially in the network analysis
community. The problem of finding a clustering with maximal modularity is NP-
Complete [2]. As a result many polynomial time heuristic algorithms have been
developed [3, 4, 5, 6, 7, 8]. Among these algorithms, approaches resembling the
multilevel paradigm as used in graph partitioning have been shown to produce
high quality clustering solutions and scale to large graphs [9, 10, 11].

However, most of these approaches adhere closely to the agglomerative method
of merging pairs of clusters iteratively. This can lead to skewed cluster sizes as
well as require excessive amounts of computation time. While methods for pri-
oritizing cluster merges have been proposed to reduce skewed cluster sizes, these
approaches are inherently serial. The use of post-clustering refinement has not
been present in most of these approaches.

In this paper we present multilevel algorithms for generating high quality
modularity-based graph clusterings. The contributions of our work are:

• A method for efficiently contracting a graph for the modularity objective.

• An robust method for generating clusterings of a contracted graph.

• A modified version of boundary refinement for the modularity objective.

• Shared-memory parallel formulations of these algorithms.

We show that for a graph with n vertices and m edges, these algorithms have
O(m+ n) time and O(m+ n) space complexities. We show that the shared-
memory parallel versions of these algorithms have a parallel time complexity
of O(m/p+ n/p+ k) where p is the number of threads and k is the number
of clusters. To validate our contributions, we compare our implementation of
these algorithms, Nerstrand , against the serial clustering tool Louvain [9] and
the parallel clustering tools community-el [11] and NetworKit [12], and show
that Nerstrand produces clusterings of equal or greater modularity and is 4.5–
27.2 times faster than the methods that generate clusterings with competitive
modularity. The parallel version of Nerstrand is scalable and extremely fast,
clustering a graph with over 105 million vertices and 3.3 billion edges in 90
seconds using 16 cores.

This paper is organized into the following sections. In Section 2 we define
the notation used throughout this paper. In Section 3 we give an overview of
current graph clustering methods for maximizing modularity. In Section 4 we
give an overview of the multilevel paradigm, its use in the graph partitioning
problem, and more recently in the graph clustering problem. Descriptions of the
serial algorithms we developed are presented in Section 5, and descriptions of
their parallel counter parts are presented in Section 6. In Section 7 we describe
our experimental setup. This is followed by the results of our experiments in
Sections 8 and 9, in which we evaluate the quality and speed of the presented
algorithms. Finally in Section 10, we review the findings of this paper.
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2. Definitions & Notation

A simple undirected graph G = (V,E) consists of a set of vertices V and a
set of edges E, where each edge e = {v, u} is composed of an unordered pair
of vertices (i.e., v, u ∈ V ). The number of vertices is denoted by the scalar
n = |V |, and the number of edges is denoted similarly as m = |E|. Each edge
e ∈ E can have a positive weight associated with it that is denoted by θ(e). If
there are no weights associated with the edges, then their weights are assumed
to be one.

Given a vertex v ∈ V , its set of adjacent vertices (connected by an edge) is
denoted by Γ(v) and is referred to as the neighborhood of v. For an unweighted
graph, d(v) denotes the number of edges incident to v (e.g., d(v) = |Γ(v)|), and
for the case of weighted edges, d(v) denotes the total weight of its incident edges
(e.g., d(v) =

∑
u∈Γ(v) θ({v, u})).

A clustering C of G is described by the division of V into k non-empty and
disjoint subsets C = {C1, C2, . . . , Ck}, which are referred to as clusters. The sum
of vertex degrees within a cluster is denoted as d(Ci) (i.e., d(Ci) =

∑
v∈Ci d(v)).

The internal degree dint(Ci) of a cluster Ci is the number of edges (or sum of
the edge weight) that connect vertices in Ci to other vertices within Ci. The
external degree dext(Ci) of a cluster Ci is the number of edges (or sum of the
edge weight) that connect vertices in Ci to vertices in other clusters. The
neighborhood of a cluster Vi, that is all clusters connected to Ci by at least one
edge, is denoted by Γ(Ci). The number of edges connecting the cluster Ci to
Cj is denoted as dCj (Ci). Since G is an undirected graph, dCj (Ci) = dCi(Cj).
Similarly, the number of edges (or total edge weight) connecting a vertex v to
the cluster Ci is denoted as dCi(v) (i.e., dCi(v) =

∑
u∈Ci∩Γ(v) θ({v, u}). To aid

in the discussion of moving vertices between clusters, we will denote the cluster
Ci with the vertex v removed, as Ci − {v}, and the cluster Cj with the vertex
v added as Cj + {v}.

The metric of graph modularity, and the focus of this paper, was intro-
duced by Newman and Girvan [1], and has become ubiquitous in recent graph
clustering/community detection literature. Modularity measures the difference
between the expected number of intra-cluster edges and the actual number of
intra-cluster edges. Denoted by Q, the modularity of a clustering C is expressed
as

Q =
1

d(V )

(∑
Ci∈C

(
dint(Ci)−

d(Ci)
2

d(V )

))
, (1)

where d(V ) is the total degree of the entire graph (i.e., d(V ) =
∑
v∈V d(v)).

From this, we can see the modularity QCi contributed by cluster Ci is

QCi =
1

d(V )

(
dint(Ci)−

d(Ci)
2

d(V )

)
. (2)

The value of Q ranges from −0.5, where are of the edges in the graph are
inter-cluster edges, and approaches 1.0 if all edges in the graph are intra-cluster
edges and there is a large number of clusters. Note that this metric does not use
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the number of vertices within a cluster, but rather only the edges. Subsequently,
vertices of degree zero, can arbitrarily be placed in any cluster without changing
the modularity.

3. Modularity Based Graph Clustering

A large number of approaches for maximizing modularity have been devel-
oped since it was first proposed [1] a decade ago. Fortunato [13] provides an
overview of modularity and methods for its maximization.

The majority of approaches fall into the category of agglomerative clustering.
In agglomerative clustering, each vertex is placed in its own cluster, and pairs
of clusters are iteratively merged together if it increases the modularity of the
clustering. When there exists no pair of clusters whose merging would result in
an increase in modularity, the process stops, and the clustering is returned.

The greedy agglomerative method introduced by Clauset et al. [4], is the
most well-known of the these approaches, due to its ability to find good clus-
terings in relatively little time. Its low runtime is the result of exploiting the
sparse structure of the graph to limit the number of merges it needs to consider
and the number of updates that it needs to perform during agglomeration. The
quality of the clusterings it finds is the result of recording the modularity after
each merge, and continuing to perform cluster merges until there is only a sin-
gle cluster, and then reverting to the state with the maximum modularity. The
structure used to maintain this state information is a binary tree in which each
node represents a cluster, and the children of a node are the clusters which were
merged to form the node. They established an upper bound on the complexity
of this algorithm of O(mh log n), where h is the height of the tree recording
cluster merges. If this tree is fairly balanced, h will be close to log n.

It was noted that this algorithm tends to discover several super-clusters,
composed of most of the vertices in the graph. Wakita and Tsurumi [14] showed
that these super clusters are the result of one or a few large clusters successively
merging with small clusters, causing h to approach n, which results in a running
time near O(mn). They also showed that the creation of these super-clusters
can be of detriment to the modularity of the clustering. They addressed this by
presenting an algorithm that favors merging clusters of similar size, which helps
to prevent this unbalanced merging.

Although it does not maximize modularity explicitly, Label Propagation [15]
is an iterative scheme that starts by assigning every vertex a unique label, and
in every iteration a new label is assigned to each vertex based on the label of
the majority of its neighbors. Although it does not maximize modularity as well
many of the agglomerative schemes, its near linear running time still makes it
an attractive option for maximizing modularity on large graphs.

The Louvain method [9] finds a set of cluster merges through an iterative
process. It does this by initializing every vertex to its own cluster as is done in
agglomerative methods, and then for each vertex, checks to see if moving it to
a different cluster will improve modularity. It moves vertices this way in passes,
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until a pass results in no moves being made. Then, a new graph is generated
where each vertex is a cluster of vertices from the previous graph. This process
is repeated recursively until a graph is generated in which no vertices change
clusters. This is currently one of the fastest modularity based clustering methods
available [16].

There is a small number of parallel algorithms for modularity based graph
clustering. Reidy et al. [11] generate new graphs similar to the Louvain method.
However, here instead of moving vertices, clusters are merged by collapsing a
maximal matching of the clusters. Parallelism is extracted by calculating the
desirability to collapse each edge independently, and then a multi-pass method
is used to find the maximal cluster matching. Fagginger Auer and Bisseling [17]
present a similar approach using maximal matchings on GPU architectures, with
extensions to matching in order to increase the rate of cluster merging. Both of
these use a fine grain approach to parallelism, and are similar to the coarsening
phase of the multilevel paradigm discussed in the next section.

Staudt and Meyerhenke [12] developed a parallel version of the Label Propa-
gation algorithm. Their algorithm takes advantage of the independent nature of
determining the label for each vertex, and as a result scales quite well. However,
as is the case with the serial formulation of label propagation, it does not directly
optimize modularity and can fail to produce clusterings with high modularity.
Along with parallel label propagation, Staudt and Meyerhenke also proposed
a parallel version of the Louvain method, which visits vertices in parallel and
moves them between clusters using possibly stale cluster information. To fur-
ther improve the quality of these clusterings, they also added a secondary move
step (referred to as refinement) after the Louvain method has been recursively
applied.

4. The Multilevel Paradigm

Multilevel methods for graph partitioning have been shown to be computa-
tionally efficient and lead to high-quality partitionings [18, 19, 20, 21, 22]. The
multilevel paradigm is composed of three phases: coarsening, initial clustering,
and uncoarsening.

A series of increasingly coarser (smaller) graphs, G1, . . . , Gs, is generated
from the input graph G0 in the coarsening phase. A solution Cs of the smallest
graph Gs is generated in the initial clustering phase using a direct clustering
algorithm (i.e., a non-multilevel clustering algorithm). Finally, in the uncoars-
ening phase, the initial solution is used to derive solutions for the successive
finer (larger) graphs. This is done in two parts: first projecting the solution
from Gi+1 to Gi, and then the solution is refined, making use of the increased
degrees of freedom of the finer graph.

Noack and Rotta [10] developed a method for modularity based graph clus-
tering that uses the multilevel paradigm. Instead of collapsing independent sets
of vertices as in graph partitioning, they use agglomerative clustering to iter-
atively determine groups of vertices to collapse together. To avoid the uneven
merging of clusters, they prioritize cluster merges based on ∆Q/

√
d(Ci)d(Cj),
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where ∆Q is the gain in modularity from merging clusters Ci and Cj . The state
of the clustering is intermittently instantiated as a graph to provide several lev-
els on which refinement can be performed. Their refinement visits each vertex
and considers it for moving between clusters.

Djidjev and Onus [23] showed that the multilevel algorithms of [18] for graph
partitioning can be used directly to find two-way clusterings with high modu-
larity by using a modularity derived input graph.

5. Serial Clustering Methods

The algorithms that we developed for Nerstrand follow the multilevel paradigm
closely as it is used for the graph partitioning problem. A high-level overview
of how these algorithms fit together is as follows:

1. A graph G0 = (V,E) is given as input.

2. Coarsening : A series of increasingly coarser graphs is generated: G1, . . . , Gs.

3. Initial Clustering : A clustering C = {C1, . . . , Ck} is created by assigning
each vertex in Gs to a cluster.

4. Uncoarsening : The clustering C is projected through the series of coarse
graphs, Gs → · · · → G0, while being improved for each graph.

5. The clustering C is returned as output.

We introduce aggregation schemes to address the issue of coarsening graphs
with power-law degree distributions in Section 5.1. We introduce a method for
effectively generating initial clusterings of a coarsened graph in Section 5.2. We
present a formulation of refinement for maximizing modularity in Section 5.3.
We give a complexity analysis of these algorithms in Section 5.4, showing that
they run in O(m+ n) time and O(m+ n) space.

5.1. Coarsening

Coarsening is made up of two steps: aggregation and contraction. Aggre-
gation is where matchings/groupings are assigned to each vertex in Gi, and in
contraction, these matchings/groupings are used to generate the next coarser
graph Gi+1. We explored three different aggregation schemes: matching (MAT),
matching with secondary two-hop matching (M2M), and first choice grouping
(FCG). For all three aggregation schemes, we attempt to merge all vertices,
which helps to prevent the skewed cluster sizes present in greedy agglomerative
methods. These three schemes choose vertices to aggregate together by select-
ing the vertex u to aggregate v with that maximizes the function Qmerge(v, u).
This is the change in modularity that would result if v and u were clusters and
were merged to form a single cluster. The change in modularity by merging v
and u is

Qmerge(v, u) = Q{v,u} − (Q{v} +Q{u}). (3)

In the special case where v = u, Qmerge(v, u) = 0 (i.e., there is no change in
modularity if a vertex is merged with itself).
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Algorithm 1 Standard Matching (MAT)

1: function Match(G(V,E))
2: Mark all v ∈ V as unmatched
3: for all v ∈ V in random order do
4: if v is unmatched then
5: w ← v
6: for all u ∈ Γ(v) do
7: if u is unmatched and Qmerge(v, u) > Qmerge(v, w) then
8: w ← u
9: end if

10: end for
11: Mark v and w as matched with each other
12: end if
13: end for
14: end function

Figure 1: A small maximal matching.

5.1.1. Matching

Our standard matching algorithm (MAT) is outlined in Algorithm 1. It
visits each vertex v in random order and matches v with the unmatched neighbor
u ∈ Γ(v) for which equation (3) is maximized. If v has no unmatched neighbors,
or equation (3) is below zero, v is matched with itself (aggregated by itself).

Standard matching works well on graphs with near uniform degree distribu-
tion as matchings tend to be very large. However, power-law degree distributions
prevent large matchings, causing the coarser graph to be of similar size of the
fine graph. An example of this is shown in Figure 1, where a maximal matching
of a graph with twelve vertices has a size of two.

5.1.2. Two-Hop Matching

To address these matchings of small size in MAT, we developed a variation of
matching that uses secondary two-hop matching (M2M). This matching scheme
is outlined in Algorithm 2. As in MAT, all of v’s unmatched neighbors are
searched to find the best vertex to match with (for brevity this is left out on
line 3). If all of the neighbors of v are matched, v matches with an unmatched
neighbor of one of its neighbors. That is, v matches with a vertex w ∈ Γ(u),
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Algorithm 2 Two-Hop Matching (M2M)

1: function TwoHopMatch(G(V,E))
2: for all v ∈ V do
3: . . .
4: if v is unmatched and d(v) ≤ max. two-hop degree then
5: for all u ∈ Γ(v) in random order do
6: i← 1
7: for all w ∈ Γ(u) do
8: if w is unmatched and d(w) ≤ max. two-hop degree then
9: Mark v and w as matched with each other

10: Break
11: end if
12: if i > max. neighbors to search then
13: Break
14: end if
15: i← i+ 1
16: end for
17: end for
18: end if
19: end for
20: end function

where u ∈ Γ(v). There is no prioritization in finding w and instead the first
unmatched w is used. This is due to computational cost that would be associated
with performing a complete scan of all two-hop neighbors. Additionally, we set
a maximum number of neighbors that each vertex can search before it matches
with itself. The neighbors of u are searched in random order so as to not
repeatedly search the parts of u adjacency list. To ensure we do not decrease
the quality of the matching, we limit two hop matching to only vertices with
low degree.

5.1.3. First Choice Grouping

The third option we explored for aggregating power-law graphs was to allow
more than two vertices to be aggregated together at a time. The first choice
grouping (FCG) scheme is based on the FirstChoice aggregation scheme orig-
inally used for contracting hypergraphs [24] and later applied to contracting
simple graphs for the graph partitioning problem [25]. Our formulation for
this paper differs from these earlier methods in that we not only consider the
weight of the edge, but the current state of vertex groupings and the associated
modularity gain.

An outline of this scheme is given in Algorithm 3. When searching for a
vertex or vertices to aggregate the vertex v with, all of the neighbors u ∈ Γ(v)
are considered regardless of whether they have been matched/grouped already.
If u is ungrouped, then its priority for grouping is determined using equation
(3). If u belongs to the group g, then the priority for adding v to that group
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Algorithm 3 First Choice Grouping (FCG)

1: function FirstChoiceGrouping(G(V,E))
2: Mark all v ∈ V as unmatched
3: for all v ∈ V do
4: if v is unmatched then
5: c← an empty group
6: for all u ∈ Γ(v) do
7: if u is unmatched then
8: if Qmerge(v, u) > Qmerge(v, c) then
9: c← u

10: end if
11: else
12: g ← group of u
13: if Qmerge(v, g) > Qmerge(v, c) then
14: c← g
15: end if
16: end if
17: end for
18: Add v to the group c
19: end if
20: end for
21: end function

Algorithm 4 Initial Clustering

1: function InitialClustering(G(V,E))
2: C(v)← v for all v ∈ V
3: Refine(C,G)
4: return C
5: end function

is determined similarly, except the edges from g to v need to be summed, and
d(g) needs to be tracked.

5.2. Initial Clustering

Once coarsening is finished, we are left with the coarsest graph Gs, and
need to create the clustering C = {C1, C2, . . . , Ck}. We call this process initial
clustering. Initial clustering is done with a direct clustering scheme, that is, a
non-multilevel scheme that operates directly on Gs.

In Gs, each vertex is the result of collapsing together clusters of fine vertices
during coarsening. For this reason, we can use a relatively simple initial clus-
tering scheme. Our initial clustering scheme works by setting each vertex to be
a singleton cluster as in agglomerative clustering and then applying refinement
as described in Section 5.3.2. This is similar to a single level of the Louvain
method [9]. This is shown in Algorithm 4.
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Algorithm 5 Uncoarsening

1: function Uncoarsening(Gi(Vi, Ei),Ci+1)
2: Ci ← projection of Ci+1 onto Gi
3: Refine(Gi(Vi, Ei),Ci)
4: return Ci
5: end function

5.3. Uncoarsening

In the uncoarsening phase, we take the clustering of the coarsest graph,
Gs, and use it as an estimate for a good clustering of the finer Gs−1. We then
improve it for Gs−1 finding a local maxima of modularity. This is repeated until
the clustering is applied to, and improved for G0. The process of applying the
clustering of Gi to Gi−1 is referred to as projection. The process of improving
the clustering for Gi−1 is referred to as refinement.

5.3.1. Projection

Projection in Nerstrand is done by propagating cluster information from the
coarse vertices in Gi+1 to the fine vertices in Gi. By keeping track of what fine
vertices compose a coarse vertex, we can project a clustering of Gi+1 to Gi,
by assigning each fine vertex in Gi to the same cluster that its coarse vertex is
assigned. Since we keep track of collapsed edge weight for each coarse vertex,
and use them in computing cluster degrees, the modularity of the clustering
does not change in projection.

5.3.2. Refinement

We developed two modularity based refinement methods: Random Boundary
Refinement, and Greedy Boundary Refinement. These two methods differ only
in the order in which they consider vertices for moving. Both methods visit only
vertices that are connected via an edge to one or more vertices which reside in
different clusters. These vertices are referred to as boundary vertices. Similarly,
when considering moving a vertex, we only evaluate the gain associated with
moving it to a cluster to which it is connected.

It is possible that moving a vertex to a cluster to which is not connected or
moving a vertex that is not a boundary vertex could result in a positive gain in
modularity. For this to occur, when moving the vertex v ∈ Ci to the cluster Cj
to which it has no connection, the difference in the degree of Ci and the degree
Cj must make up a larger fraction of the total edge weight in the graph than
the fraction of v’s edge weight that connects it to Ci:

d(Ci − {v}) + d(Cj)

d(V )
>
dCi(v)

d(v)
.

We observed that when considering all vertices for movement to all clusters
resulted in only a 0.06% gain in modularity, while taking over 16 times as
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Algorithm 6 Random Boundary Refinement

1: function RBR(G(V,E),C)
2: repeat
3: for all Boundary vertices v in random order do
4: for all c ∈ clusters of Γ(v) do
5: if ∆Q(v, c) > ∆Q(v, C(v)) then
6: C(v)← c
7: end if
8: end for
9: end for

10: until No moves are made or max. # of iterations completed
11: return C
12: end function

long. Furthermore, Brandes et al. [2] showed that a clustering with maximum
modularity does not include non-contiguous clusters.

The gain by moving a vertex from cluster Ci to cluster Cj is given by the
combined change in the cluster modularities:

∆Q(v, Cj) = (QCi−{v} +QCj+{v})− (QCi +QCj ).

Note that if it leads to a positive gain in modularity, clusters can be completely
emptied and removed during refinement.

If at least one vertex was moved while visiting all of the boundary vertices,
another pass is performed. Refinement stops when no vertices are moved in a
pass, or when a maximum number of passes has been made.

Random Boundary Refinement (RBR) is described in Algorithm 6. It visits
the boundary vertices in random order. This has two advantages. The first
is that we can visit all of the boundary vertices in linear time. The second is
that it is stochastic, and we can perform it multiple times using the same input
clustering with different random seeds to explore the solution space.

Greedy Boundary Refinement (GBR) is described by Algorithm 7. It first
inserts the boundary vertices into a priority queue. Each vertex is then extracted
from this priority queue and considered for moving to a different cluster. As
the state of the clustering changes, the priority of the vertices remaining in
the priority queue is updated. This ensures that we continually make the best
available move for the current clustering state.

To accurately prioritize vertices for movement between clusters based on
modularity gain, we would need to use:

∆Q = (QCi−{v} −QCi) + arg max
j

(QCj+{v} −QCj ). (4)

This however, is a computationally expensive priority to maintain as the arg max
part of the equation will change each time a vertex is moved to or from one of
the clusters to which v is connected.

11



Algorithm 7 Greedy Boundary Refinement

1: function GBR(G(V,E),C)
2: repeat
3: q ← PriorityQueue
4: for all Boundary vertices v in random order do
5: Insert v into q using equation (4)
6: end for
7: while q is not empty do
8: for all c ∈ clusters of Γ(v) do
9: if ∆Q(v, c) > ∆Q(v, C(v)) then

10: C(v)← c
11: end if
12: end for
13: if v was moved then
14: Update the priority of all u ∈ Γ(v) in q
15: end if
16: end while
17: until No moves are made or max. # of iterations completed
18: return C
19: end function

We decided instead to use a heuristic for the priority. This heuristic uses the
modularity gain associated with removing the vertex from its current cluster
only (the left side of equation (4)). Using this priority, boundary vertices are
inserted into a priority queue. Vertices are then extracted from the priority
queue and the modularity gains associated with moving the front vertex are
evaluated fully.

When a vertex v is moved from Ci to Cj , we only update the priority of
the vertices connected to it, even though all the priority of all vertices in Ci
and Cj have changed. In our experiments we did not observe an increase in the
modularity of clusterings if we kept the priority of all vertices up to date.

5.4. Complexity Analysis

The overall complexity for the serial algorithms in Nerstrand is the sum of
its three phases:

1. Coarsening, O(m+ n), in Section 5.4.2.

2. Initial Clustering, O(m+ n), in Section 5.4.3.

3. Uncoarsening, O(m + n) for RBR and O(m log n) for GBR, in Section
5.4.4.

Adding these we get an overall computational complexity of O(m + n) (and
O(m log n) if GBR is used), where m is the number of edges and n is the
number of vertices. The space complexity is determined by the combined size
of the generated graphs, which we show to be O(m+ n) in Section 5.4.1.
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5.4.1. Upper Bound on Total Vertices and Edges

The total number of vertices and edges in the entire series of graphsG0, . . . , Gs,
determines the input size for many of the algorithms in Nerstrand . If only a
single edge is collapsed between successive graphs such that ni+1 = ni − 1 and
mi+1 = mi − 1, the total number of vertices and edges processed would be n2/2
and m2/2 respectively giving a computational and space complexity of at least
O(m2 +n2). We address this issue by stopping coarsening when the rate of con-
traction slows beyond |Gi| > α|Gi−1| where 0 < α < 1.0. Here |G| represents
the size of the graph, this can be in terms of the number of vertices, the number
of edges, or a combination of the two. The total number of vertices and edges
processed can then be represented as the sum of a geometric series:

s∑
i=0

|Gi| =
s∑
i=0

|G0|αi = |G0|
1− αs+1

1− α
. (5)

Since a graph must contain at least one vertex (and for our purposes at least
one edge) we can place on upper bound on s of logα(1/|G0|). Plugging this in
for s in equation (5) we get

|G0|
1− αlogα( 1

|G0| )α

1− α
= |G0|

1− α
|G0|

1− α
<
|G0|

1− α
.

Since α is a constant, we can see then that the total number of vertices is
O(n) and the total number of edges is O(m). That is,

∑s
i=0 ni = O(n) and∑s

i=0mi = O(m). Our choice of α not only changes the constants involved
in these complexities, but also the size of Gs, which affects the quality of the
clustering and the amount of computation required during initial clustering.

5.4.2. Coarsening Complexity

In the standard matching aggregation scheme (MAT), each vertex v chooses
the unmatched neighbor that maximizes equation (3). This requires each vertex
to scan through all of its edges, which makes this an O(m+ n) operation.

In the two-hop matching aggregation scheme (M2M), each vertex v chooses
one of its unmatched neighbors to match with, or one of its neighbor’s un-
matched neighbors. When unrestricted, in a worse case scenario this would
result in the scanning of the edges of all of v’s neighbors, d(Γ(v)), which would
make this an O(m2) operation. To keep the complexity to O(m + n), we limit
the total number of neighbor’s edges scanned by v to a constant number (we
use 32), before it is matched with itself (Algorithm 2, line 12).

In the first choice grouping aggregation scheme (FCG), each vertex v chooses
one of its neighbors with which to match. The degree of groupings are updated
incrementally as they are formed in O(1) time, which allows determining the
degree of a grouping g in O(1) time. As v scans through its edges to determine
with whom to match, it sums up the weight of edges connected to grouping
using a hash table, which takes O(1) time per edge. This allows us to look up
dv(g) in O(1). As a result, FCG can be done in O(m+ n).
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To construct Gi+1 based on the aggregation of Gi, we iterate over the set
of vertices Vi in Gi. When we encounter a vertex v ∈ Vi that is matched with
a vertex u ∈ Vi with a lower label (or with itself), we construct the new vertex
c ∈ Vi+1. We merge the adjacency lists of v and u via a hash table using the
corresponding coarse vertex numbers as keys. This allows us to combine edges
to a vertex w ∈ Γ(v),∈ Γ(u) as well as edges to vertices x and y that have been
aggregated together. This translates to operating on each vertex in the graph
and inserting each edge into a hash table which is an O(1) operation, which also
gives us a complexity of O(m+n) for contracting a graph with n vertices and m
edges. Thus, coarsening Gi to Gi+1 requires O(mi +ni) time, and storing Gi+1

requires O(mi+1 + ni+1) space. Since we established that
∑s
i=0 ni = O(n) and∑s

i=0mi = O(m) in Section 5.4.1, we can then say that the coarsening phase
takes O(m+ n) time.

5.4.3. Initial Clustering Complexity

In order to analyze the complexity in the context of initial clustering, let
ns = |Vs| and ms = |Es| represent the number of vertices and number of edges in
Gs, respectively. Setting each vertex to be a singleton cluster takesO(1) time per
vertex, and thus O(ns) time total, and O(ns) space for the cluster labels. Then,
performing a pass of Random Boundary Refinement on the ns clusters takes
O(ns+ms) time as described in Section 5.4.4. A constant number of clusterings
are created, so in total the complexity of initial clustering is O(ns + ms). The
only bounds on the size of the input graph for initial clustering is ns ≤ n and
ms ≤ m, thus the complexity of initial clustering is bounded by O(n+m).

5.4.4. Uncoarsening Complexity

Projection is a simple lookup in two arrays for each vertex in the fine graph
Gi, thus projection is an O(ni) operation per graph. Since we know that there
are O(n) vertices total in all of the graphs of the multilevel hierarchy, we know
that the total complexity of projection is O(n).

In Random Boundary Refinement, the list of boundary vertices can be per-
muted in O(ni) time. Each vertex v is visited once per pass, and at most d(v)
edges will be inspected when deciding to move v, and at most d(v) clusters will
need to be updated if v is moved. So in the worse case we will need to visit
ni boundary vertices, and we may need to inspect up to mi edges, and if every
vertex is moved then mi cluster updates will need to be performed. This gives
us a complexity of O(mi + ni) per pass. By limiting the number of passes that
can be performed to a constant number (we found eight to work well), we can
see that Random Boundary Refinement takes at most O(m+ n) time.

GBR performs the same operations as RBR with the addition of inserting,
updating, and extracting vertices from the priority queue, which dominates the
runtime. The priority queue contains up to ni vertices and up to mi updates can
be performed upon it. Which means per graph, refinement takes O(mi log ni)
time using a binary heap implementation [26]. And then for all graphs in the
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multilevel hierarchy we have:

O

(
s∑
i=0

mi log ni

)
≤ O

((
s∑
i=0

mi

)
log

(
s∑
i=0

ni

))
.

We previously established that
∑s
i=0mi = O(m) and

∑s
i=0 ni = O(n), so using

replacement we can see that the total complexity of GBR is O(m log n).

6. Parallel Clustering Methods

In order to allow Nerstrand to take advantage of modern compute architec-
tures, we developed shared memory parallel versions of the previously outlined
algorithms. We developed methods for assigning vertices to threads in a manner
that balances the number of edges for which a thread is responsible. For par-
allelizing the coarsening phase, we introduce a method for contracting groups
of vertices together in an unprotected fashion and resolving broken groupings.
Finally, we introduce a method for performing boundary refinement in parallel
for the modularity objective.

Our general approach to parallelization follows a coarse-grained model, where
threads allocate their own memory and synchronization points are minimized [27].
Each thread manages its own subset of vertices of the original graph. We use the
CSR sparse matrix data structure for storing the graph. Each thread allocates
its own CSR structure to store its vertices and incident edges. Each thread
is responsible for performing the computation associated with its vertices and
edges.

6.1. Graph Distribution

For distributing vertices and their associated edges among threads, we ex-
perimented with three strategies. All three strategies balance the number of
edges assigned to each thread, as this is the dominating factor in the runtime.

The first strategy, which we will refer to as a block distribution, preserves
the original ordering of the vertices of the graph, and assigns a continuous chunk
of vertices to each thread such that the sum of the degrees is roughly 2m/p,
where p is the number of threads. This strategy has the benefit of preserving
memory friendly orderings if they exist. However, it can lead to significantly
different numbers of vertices being assigned to threads if the vertex degrees are
not evenly distributed in the original ordering.

The second strategy, which we will refer to as a cyclic distribution, permutes
the vertex order in a cyclic fashion using cycles of size p. That is, the array’s
indices will be reordered to {1, p+ 1, 2p+ 1, . . . , 2, p+ 2, 2p+ 2, . . .}. Then, each
thread is assigned a continuous chunk of permuted vertices such that the sum of
the degrees is roughly 2m/p. Note that this is different from a traditional cyclic
distribution in that a thread may be assigned vertices from multiple cycles. This
strategy has the benefit of leading to a more even vertex distribution when the
vertex degrees of the original ordering are not evenly distributed. However, it
sacrifices the benefits of orderings that are memory friendly.

15



Algorithm 8 Parallel Matching Cleanup

1: function Cleanup(G(V,E),M)
2: Synchronize threads
3: T ← all vertices owned by this thread
4: for all v ∈ T do
5: if M(M(v)) 6= v then
6: M(v)← v
7: end if
8: end for
9: return M

10: end function

The third strategy, which we will refer to as a block-cyclic distribution, at-
tempts to combine the best of both of these strategies. It permutes the vertex
order in a block-cyclic fashion. That is, the array’s indices will be reordered
to {B1, Bp+1, B2p+1, . . . , B2, Bp+2, B2p+2, . . .}, where Bi is the ith block of ver-
tices. Using larger blocks will mean more of the original ordering will be pre-
served and possibly any memory friendly properties, but will increase the likely
hood that the vertices will not be balanced among threads. Using smaller blocks
will have the opposite effect.

6.2. Coarsening

For parallelizing aggregation, we update the data structures for recording
vertex matchings/groupings without using locks or exclusive access patterns,
allowing race conditions. We then fix the broken matchings caused by race
conditions after attempting to match/group all vertices.

A matching vector M stores information about the other vertices that are
part of a coarse vertex via symmetric matchings. So if the vertex v is matched
with the vertex u, then M(v) = u, and M(u) = v. For a given vertex v, let
M(v) = u, where u is the vertex that has been matched with v. For example if
we have a graph with five vertices, and vertices 1 and 5 are matched together,
vertices 3 and 4 are matched together, and vertex 2 is matched with itself, then
the matching vector M would be {5, 2, 4, 3, 1}.

A broken matching is where M(v) = u, but M(u) 6= v, which can be caused if
one thread is tries to match v with u, and another thread tries to match w with
u and overwrites M(u) with w. The cleanup process for fixing these broken
matchings is described in Algorithm 8. After threads finish matching their
vertices, they re-iterate over them and for any vertex v for which M(M(v)) 6=
v, the vertex is matched with itself, M(v) = v (line 6). This technique for
performing parallel matching was first proposed by Catalyürek et al. [28], and
can be directly applied to the MAT and M2M schemes.

This however, does not apply to aggregation schemes where more than two
vertices can be aggregated together at once, as is the case with FCG. To address
this, we developed a parallel method for grouping vertices in an unprotected
fashion. We generalize M from being a matching vector to that of a grouping
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vector, where aggregated vertices in M form a cycle of arbitrary length. If a
grouping contains the vertices v, u, and w, then M(v) = u, M(u) = w, and
M(w) = v.

To accomplish this during aggregation, all vertices are initially grouped with
themselves, M(v) = v. Then, to add the vertex v to the vertex u’s grouping,
we set M(v) = M(u), and M(u) = v. This means that a valid grouping vector
M will contain only cycles.

However, performing updates to this vector without synchronization allows
for broken cycles. Because M is initialized to be all length one cycles, and every
write to M is a valid vertex number, we know that every index in M is a valid
vertex number, and thus a valid index in M . Then, for every vertex v, the
linked list created by following the indices M(v),M(M(v)), . . . ,M(u), must be
non-terminating, so we know that v must either be part of a cycle, or part of a
tail connected to a cycle. For architectures in which the writing of words is not
atomic (i.e., two threads writing to the same location could result in an invalid
vertex number being written), a simple validity check can be added. Vertices
that are part of a tail are not part of a valid grouping, and must be cleaned up.

In order to cleanup these tails, the following method described in Algorithm
9 is used which does not require synchronization. Each thread marks all of its
vertices as not finalized. Then for each vertex v that a thread owns that is
not marked as finalized, the indices in M are followed until a cycle is found
using a hash table (line 10). If v is part of that cycle, and v is the owner of
the cycle (we use the lowest vertex number in the cycle as the owner), then all
vertices in the cycle are marked as finalized. If v is not part that cycle, it is
matched with itself. This leaves us with a valid M vector where every vertex is
part of a cycle (including cycles of length one). To avoid creating large cycles,
during aggregation the size of groups of vertices are tracked, and vertices are
only allowed to join groups smaller than a maximum size (we use 1024).

Contraction is an inherently parallel process, as for any matching or group
of vertices being collapsed, the creation of the resulting coarse vertex and coarse
edges depends only upon the finer graph Gi and matching/grouping vector M .
Threads are responsible for contracting the matchings/groups of fine vertices
which form the coarse vertices they will own.

6.3. Initial Clustering

For a moderate number of threads, the initial clustering stage lends itself
well to parallelization, where each thread creates one or more of the initial
clusterings, and a reduction operation is performed at the end to choose the
best one. That is, each thread performs Random Boundary Refinement on the
coarse graph with each vertex initialized as a singleton cluster. The only concern
for parallelization here is effectively using the cache hierarchy to reduce the total
memory bandwidth required. For large numbers of threads and sufficiently large
coarse graphs, each thread initialize the vertices it owns to singleton clusters,
and then the threads work cooperatively to create each initial clustering using
the parallel formulation of refinement described below in Section 6.4.
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Algorithm 9 Parallel Group Cleanup

1: function GroupCleanup(G(V,E),M)
2: T ← all vertices owned by this thread
3: Mark all v ∈ T as not finalized
4: for all v ∈ T do
5: if v is not finalized then
6: H ← a HashTable
7: u← v
8: for i← 1 to max group size do
9: u←M(v)

10: if u ∈ H then
11: if u = v then
12: if Minimum w ∈ H is owned by this thread then
13: Mark all w ∈ H as finalized
14: end if
15: else
16: M(v)← v and mark v as finalized
17: end if
18: Break
19: else
20: Insert u into H
21: end if
22: end for
23: if v has not been finalized then
24: M(v)← v and mark v as finalized
25: end if
26: end if
27: end for
28: end function

6.4. Uncoarsening

Projection is also an inherently parallel process, as each thread can indepen-
dently perform cluster projection on the vertices it owns. Conversely, refinement
is an inherently serial process.

Because the gains associated with moving a vertex v from the cluster Ci
to the cluster Cj depends on the degree information Ci and Cj , we cannot
guarantee that moving vertices in parallel will result in a positive net gain in
modularity. Having the owning thread lock the pair of clusters Ci and Cj before
moving the vertex v would allow us to guarantee we only make positive gain
moves, but this would greatly limit the amount of parallelism.

Our parallel refinement algorithm is described in Algorithm 10. Instead of
using locking clusters, each thread makes a private copy of the global clustering
state. This private copy is updated by the thread as it moves the vertices that
it owns (line 12). Because each thread is unaware of the moves being made by
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Algorithm 10 Parallel Random Boundary Refinement

1: function ParRBR(G(V,E),C)
2: repeat
3: C ′ ← C.
4: D ← empty List
5: for all Boundary vertices v this thread owns in random order do
6: for all c ∈ clusters of Γ(v) do
7: if ∆Q(v, c) > ∆Q(v, C ′(v)) then
8: C ′(v)← c
9: end if

10: end for
11: if v was moved then
12: Add move to D and apply local updates to C ′

13: end if
14: end for
15: Synchronize threads
16: C ′ ← prospective changes from all threads
17: for all m ∈ D in reverse order do
18: if ∆Q(v, c) ≤ 0 then
19: Remove m from D and rollback local updates to C ′

20: end if
21: end for
22: Synchronize threads
23: Apply remote updates to C ′ and reduce to C
24: Synchronize threads
25: until No moves are made or max. # of iterations completed
26: return C
27: end function

other threads, a move that it sees as a positive gain move, may actually result
in a loss of modularity.

After all threads have made their desired moves, the global clustering state
is updated. Each thread then makes a pass over its selected set of moves, a
roll-back pass, where it re-evaluates each of its moves in reverse order. This
can be see on line 17. If, with the updated cluster information, the move no
longer results in a positive gain, the move is rolled back. Note that this does not
guarantee that no negative gain moves will be made, as rolling back moves in
parallel has the same issue as making the initial moves in parallel. To guarantee
no modularity loss, the roll-back pass would need to be repeated until no moves
were rolled back, and all remaining moves would have been determined positive
gain moves based on up-to-date cluster degrees. We opted to use only a single
pass to keep the cost of refinement down as we found it sufficient to prevent
the majority of negative gain moves. After all of the threads have rolled back
undesirable moves, the global clustering information is updated, and another
iteration is started.
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The clusters in which the neighbors of v reside affects how the internal and
external cluster degrees are effected by moving the vertex v. When performing
refinement serially, this is not an issue, as only one vertex moves at a time, and
cluster degrees can be updated directly.

Consider the edge {v, u} and the incident vertices v ∈ Ci and u ∈ Cj . If
the vertex v is moved to Cj and the vertex u is moved to Ck concurrently, if
the thread that owns v directly updates the cluster degrees, then 2θ{v, u} to be
added to dint(Cj), when the edge is actually between Cj and Ck. Note that if
v and u are owned by the same thread, this is not an issue as v and u will not
be moved concurrently.

To solve this problem, we developed a method for handling cluster degree
updates that is order independent. Our new method of processing cluster de-
gree updates splits the updates into two distinct parts: move updates made by
the moving vertex v, and neighbor updates made by each neighbor of v. Neigh-
bor updates can be classified as local, where the moving thread also owns the
neighbor, and as remote, where the neighbor is owned by a different thread.
Move updates and local neighbor updates are applied to the private copies of
the cluster degrees as moves are made. Remote neighbor updates are applied
afterwards as part of the global clustering state update.

For the move update, the thread that owns the moving vertex v updates its
local cluster degrees. For updating the source cluster Ci’s internal degree

∆dint(Ci) = −dCi(v),

Ci’s external degree

∆dext(Ci) =
dext(v)− dCi(v)

2
,

the destination cluster Cj ’s internal degree

∆dint(Cj) = dCj (v), (6)

and Cj ’s external degree

∆dext(Cj) =
dext(v) + dCi(v)− dCj (v)

2
.

For the neighbor update, the thread that owns the adjacent vertex u to the
moving vertex v performs updates associated with the edge {v, u}. The source
cluster Ci’s internal degree is changed by

∆dint(Ci) =

{
−θ({v, u}) if u ∈ Ci
0 else

,

and its external degree is changed by

∆dext(Ci) =

{
θ({v, u})/2 if u ∈ Ci
−θ({v, u})/2 else

.
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The destination cluster Cj ’s internal degree is changed by

∆dint(Cj) =

{
θ({v, u}) if u ∈ Cj
0 else

, (7)

and its external degree is changed by

∆dext(Cj) =

{
−θ({v, u})/2 if u ∈ Cj
θ({v, u})/2 else

.

By splitting the updates like this, they can be applied independent of the order
in which the vertices were moved.

Applying this to our previous example where the vertex v is moved to Cj
and the vertex u is moved to Ck concurrently, these order independent updates
result in the correct cluster degree changes. First, θ{v, u} would get added to
dint(Cj) as part of the move update via equation (6), and then the neighbor
update performed after u has moved to Ck then removes θ{v, u} from dint(Cj)
via equation (7). This has the correct net effect of leaving dint(Cj) unchanged
with respect to the edge {v, u}.

For Random Boundary Refinement, each thread visits the boundary vertices
it owns in random order. To visit vertices in order of their potential gain for
performing Greedy Boundary Refinement in parallel, each thread maintains a
priority queue containing the boundary vertices which it owns.

6.5. Parallel Complexity

The overall complexity for the parallel algorithms in Nerstrand is the sum
of its three phases:

1. Coarsening, O(m/p+ n/p), in Section 6.5.1.

2. Initial clustering, O(m/p+ n/p+ k), in Section 6.5.2.

3. Uncoarsening, O(m/p+ n/p+ k) for RBR and O((m/p) log(n/p) + k) for
GBR, in Section 6.5.3.

Adding these we get an overall parallel complexity of O(m/p + n/p + k) (and
O((m/p) log(n/p)+k) if GBR is used), where m is the number of edges, n is the
number of vertices, p is the number of threads, and k is the number of clusters.

6.5.1. Coarsening Complexity

When using MAT or M2M to coarsen a graph in parallel, each thread is
responsible for finding matches for its set of vertices, which entails scanning all
incident edges, which makes finding matches for all vertices an O(m/p + n/p)
operation. Then, to fix the broken matchings, each thread makes a second
cleanup pass over its vertices, which is an O(n/p) operation.

For FCG, it takes O(m/p + n/p) time for threads to group their sets of
vertices. Performing the group cleanup requires each thread to iterate over each
of its vertices. Then, for each vertex, the inner loop on line 8 of Algorithm 9
can search up to the maximum group size number of vertices in the worst case.
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This gives group cleanup an upper bound on runtime of O(n/p), albeit with a
very large constant in front (the maximum group size). Even when many of
the groupings reach maximum size, this rarely plays a significant factor in the
total runtime as the edges in a graph usually greatly outnumber the vertices,
and once the owning thread makes a pass over the group, the vertices will get
marked as finalized and will not be traversed again.

Contraction requires each thread to iterate over the fine vertices and edges
that form the coarse vertices and edges it will own in the next graph. This gives
contraction a parallel time complexity of O(m/p+ n/p).

Putting all of the parallel complexities from coarsening together, we that
parallel complexity of coarsening is O(m/p+ n/p) +O(n/p) = O(m/p+ n/p).

6.5.2. Initial Clustering Complexity

For small numbers of threads and small coarsest graphs, each thread inde-
pendently generates and initial clustering in O(m+n) time. However, for large
numbers of threads or large coarsest graphs, the initial clusterings are generated
cooperatively. Which means that each thread initialize its own n/p vertices to
singleton clusters. Then parallel RBR is applied to the singleton clusters, which
is shown in the next section to have a parallel complexity of O(m/p+ n/p+ k)
for m edges and n vertices.

6.5.3. Uncoarsening Complexity

Projection is an inherently parallel process where each thread projects the
clusters from the vertices in the coarse graph to the n/p fine vertices it owns.
This results in O(n/p) time.

For parallel RBR, each thread iterates over its own at most n/p boundary
vertices and considers them for moving as in serial RBR. Using the O(m + n)
result for serial RBR in Section 5.4.4 for these n/p vertices with m/p incident
edges, we then know that the movement pass of parallel RBR takesO(m/p+n/p)
time. The additional roll-back pass performs at most the same operations, and
thus is also bounded by O(m/p+ n/p) time.

Then in the two steps where the state of the clusters is updated, at lines 16
and 23 in Algorithm 10, all of the p threads states for each of the k clusters must
be combined. This can be done by assigning k/p clusters to each thread and
then having the assigned thread combine the p values for each of the clusters it
is assigned. This results in a time complexity of O(pk/p) = O(k). Thus parallel
RBR takes O(m/p+ n/p+ k) time. At the coarser levels where k is close to n,
we can see that it dominates the runtime. Then, at the finer levels where k is
much smaller than n, the O(m/p+ n/p) term dominates the runtime.

For parallel GBR, each thread has the extra work of maintaining its priority
queue which could contain up to n/p vertices, and make up to m/p updates per
iteration. This plus the O(m/p + n/p) for the rollback pass, and O(k) for the
cluster state updates makes the parallel complexity for GBR O((m/p) log(n/p)+
k).
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Table 1: Graphs Used in Experiments

Graph # Vertices # Edges
cit-Patents[29] 3,774,768 16,518,947
soc-pokec[30] 1,632,803 22,301,964
soc-LiveJournal1[31] 4,846,609 42,851,237
europe.osm[32] 50,912,018 54,054,660
com-orkut[33] 3,072,441 117,185,083
uk-2002[32] 18,520,486 261,787,258
com-friendster[33] 65,608,366 1,806,067,135
uk-2007-05[32] 105,896,555 3,301,876,564

Putting these results together with the O(n/p) time for projection, we can
see that parallel uncoarsening takes O(m/p + n/p + k) time for RBR, and
O((m/p) log(n/p)) time for GBR.

7. Experimental Methodology

The experiments that follow were run on an HP ProLiant BL280c G6 with
2x 8-core Xeon E5-2670 @ 2.6 GHz system with 256GB of memory. We used
GCC 4.7 and the accompanying libgomp that conforms to the OpenMP 3.1
specification. Unless otherwise noted, all runs were repeated 25 times with
different random seeds to get the geometric mean, minimum, or maximum time
and modularity.

The serial and parallel algorithms presented in the previous sections are im-
plemented in Nerstrand , available at http://cs.umn.edu/~lasalle/nerstrand.
When run with a single thread, a separate set of functions implementing the
serial algorithms are executed. For simplicity, we will refer to single threaded
executions of Nerstrand as s-Nerstrand , and the multi-threaded executions as
mt-Nerstrand .

We compare s-Nerstrand against what is currently the fastest [16] available
serial method for modularity maximization on large graphs, Louvain [9]. We
used version 0.2 which is available from https://sites.google.com/site/

findcommunities/. Because of Nerstrand ’s similarity with multilevel graph
partitioners, we compare against Metis [18] using version 5.1.0, available from
http://cs.umn.edu/~metis. To facilitate finding clusters, we allowed for up
to a 50000% imbalance and for the number of partitions we used powers of two
from eight to 16, 384, and selected the clustering/partitioning that resulted in
the highest modularity.

We also compare mt-Nerstrand against the parallel clustering tool community-
el [11] using version 0.7, available at http://www.cc.gatech.edu/~jriedy/

community-detection/, and the implementations of parallel label propagation
(PLP) and the parallel louvain method with refinement (PLMR) provided by
NetworKit [12] using version 3.1 available at https://networkit.iti.kit.

edu/.
Table 1 shows the graphs primarily used for evaluation in Sections 8 and 9.

Some of these are directed graphs, but for these experiments we created undi-
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Figure 2: The total number of edges and vertices generated during the multilevel
process relative to that of the input graph (a), the size of the coarsest graph
relative to the input graph (b), and the mean modularity (c), for each coarsening
scheme.

rected versions to be compatible with the modularity objective. We also used
graphs from the 10th DIMACS Implementation Challenge [32]. This challenge
consisted of two parts, graph partitioning and graph clustering. Participants
submitted algorithms and subsequent implementations to compete in several
categories, one of which was modularity maximization.

8. Serial Results

Sections 8.1 through 8.3 present the results of our experiments designed to
evaluate the different schemes for coarsening, initial clustering, and uncoarsen-
ing. For these evaluations we used the graphs described by Table 1, with the
exception of com-friendster and uk-2007-05, which were excluded due to their
size.

In Section 8.4 we present the best of these schemes as implemented in s-
Nerstrand compared against the Louvain method. This comparison is in terms
of clustering quality as well as runtime performance. All eight graphs from
Table 1 were used for the comparison.

8.1. Aggregation Schemes

We evaluated the three aggregation schemes (MAT, M2M, and FCG) using
three criteria: rate of contraction, size of coarsest graph, and effect on modu-
larity.

8.1.1. Rate of Contraction

We measured the rate of contraction by using the total number of vertices
and edges found in G0 through Gs, as this directly correlates to the amount
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of work done in the coarsening and uncoarsening phases, and the total amount
of space used. This is shown in Figure 2a. The plain vertex matching scheme,
MAT, did the worst, on average generating a total of 3.1 times as many vertices
and 5.4 times as many edges as in the original graph. M2M did better, gener-
ating a total of 2.6 times as many vertices and 5.0 times as many edges as in
the original graph. This improvement is the result of a more complete matching
made possible by two-hop matches. Notice however that this primarily resulted
in fewer vertices being generated, and only marginally decreased the number of
edges generated. This is because when a two-hop match is made, edges are only
combined, not collapsed. FCG did the best, generating only 1.7 times as many
vertices and 2.8 times as many edges as in the original graph. This is because
more than two vertices are aggregated together at a time, greatly reducing the
number of vertices in coarser graphs, and increasing the number of edges that
get combined. In addition to this, because we are targeting groups of highly
connected vertices for collapsing, we contract a large number of edges with each
coarse graph generated. This shows that while using the 0.95 minimum coars-
ening rate allows for up to 20 times as much space required as the size of the
input graph as shown in Section 5.4, in practice for FCG it is closer to only 3
times as much space as required by the original graph.

8.1.2. Size of Coarsest Graph

Figure 2b shows the number of vertices/edges in the coarsest graph divided
by the number of vertices/edges in the original graph (y-axis is in log-scale). As
expected, M2M outperformed MAT generating a coarsest graph of roughly half
the size on average, a result of a additional vertices being matched with two-hop
neighbors. FCG greatly outperformed the other methods averaging a coarsest
graph with an order of magnitude less vertices and two orders of magnitudes
less edges. Notice that FCG significantly reduced the density of the final graph.
This is because as FCG merges groups of vertices together, these groups are
supposed to represent clusters, which by definition should have a large number
of internal edges, and few external edges.

8.1.3. Effect on Modularity

Figure 2c shows the modularity after the initial clustering of the coarsest
graph, as well as the final modularity of the clustering refined and applied to
the original graph. At the initial clustering phase, M2M did the worst, with
an average modularity of 0.650, followed by MAT at 0.681. This difference in
modularity between the two matching schemes can be attributed to the gain
agnostic two-hop matches allowed by M2M. FCG did the best, with an average
modularity 0.771. This is because where the two matching schemes will only
choose the maximum gain matching from unmatched neighbors, FCG selects the
maximum gain matching/grouping from among all neighbors. After refinement,
MAT and M2M were much closer, averaging 0.809 and 0.791 respectively. The
reason for M2M closing the modularity gap, is that in refinement, many of the
negative gain two-hop matches are undone. Just as FCG did the best at creating
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Figure 3: The mean modularity (a) and the mean runtime relative to coarsening
(b) of the initial clustering schemes.

a sparse coarse graph, it also resulted in the highest average modularity, of 0.832.
This is again due to FCG always choosing the highest gain merges.

Due to the success of FCG in both reducing the size of the graph and in
terms of modularity, we elected to use it as the coarsening scheme in Nerstrand .

8.2. Initial Clustering Schemes

A good initial clustering scheme will have a relatively stable runtime and
solution quality over a variety of inputs. To better observe their robustness,
we evaluated the initial clustering scheme in the context of all three coarsening
schemes (MAT, M2M, and FCG).

We evaluated generating the initial clustering by initializing each vertex to
its own cluster and refining it using both Greedy Boundary Refinement (VTX-
GBR) as well as using Random Boundary Refinement (VTX-RBR). We ran
VTX-RBR with 16 different random seeds to generate different initial clusterings
and selected the best one. We compared these two approaches to that of a
modified version of the algorithm by Clauset et al. [4] that takes into account
the weight of collapsed edges (CNM).

Figure 3a shows the quality of the initial clustering solutions both before
and after refinement. The VTX-RBR method generated clusterings with the
highest modularity at the end of initial clustering, 0.630. The VTX-GBR and
CNM algorithms were similar in performance with modularities of 0.606 and
0.608 respectively. However, once these clusterings were projected and refined
to the original graphs, all three schemes had a final modularity of 0.792. This
show the power of the multilevel paradigm, where a large amount of the solution
quality is a result of coarsening, which was performed identically for all three
schemes, and in refinement where rough solutions can often be significantly
improved.
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Figure 3b shows the amount of time spent in initial clustering and uncoars-
ening for each coarsening scheme relative to the amount of time spent in coars-
ening. The fastest overall initial clustering scheme was VTX-RBR, taking 27.9%
of the time of coarsening. Only slightly slower, was VTX-GBR, taking 29.6%
of the time of coarsening. VTX-RBR managed to be faster than VTX-GBR
even though it made 16 clusterings, different complexities of vertex traversal:
random permutation versus a priority queue. While on finer graphs GBR ex-
hibits near linear runtimes as only a fraction of the vertices are on the boundary,
VTX-GBR starts with all vertices on the boundary, thus VTX-GBR performs
very close to its worse case runtime of O(m log n). The CNM algorithm was the
slowest, taking 51.3% of the time of coarsening.

Based on these findings, we selected VTX-RBR as the initial clustering
scheme for use in Nerstrand .

8.3. Refinement Schemes

Table 2: Comparison of Refinement Schemes.

Method Mod. Improvement Runtime (s)
RBR 0.01705 3.62906
GBR 0.01708 8.08687

The effect of the two different refinement schemes (RBR and GBR) on mod-
ularity as well as their runtimes are shown in Table 2. Their modularity im-
provement was nearly identical, with GBR improving modularity only 0.15%
more than RBR. Although the order in which vertices were visited during re-
finement appears to to not impact the modularity improvement, it does however
affect the number of refinement passes required at each level. GBR on average
made 1.07 passes before reaching a steady state, whereas RBR made an average
of 2.10 passes before reaching a steady state. The cost of maintaining the prior-
ity queue caused GBR to be significantly slower, taking 2.23 times longer than
RBR. This is a product of the O(log n) time required to insert, update, and re-
move vertices from the priority in GBR, as opposed to the randomly permuted
list used in RBR in which vertices are only inserted in O(1) time.

Given that both schemes improve the quality of clusterings nearly the same
amount, we opted to use RBR as the refinement scheme in Nerstrand due to its
lower runtime.

8.4. Performance

The quality of the clusterings generated by s-Nerstrand and Metis relative
to Louvain are shown in Figure 4. In terms of clustering quality, s-Nerstrand
generated clusterings with an average modularity equal to or slightly greater
than Louvain. Across all eight graphs, s-Nerstrand produced clusterings that
were on average 5.3% better. Although s-Nerstrand and Louvain produced
clusterings of nearly identical (differing by less than 0.1%) modularity on soc-
pokec, europe.osm, uk-2002, and uk-2007-05, s-Nerstrand produced clusterings

27



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

cit-Patents

soc-pokec

com
-orkut

soc-LiveJournal1

europe.osm

uk-2002

com
-friendster

uk-2007-05

M
o
d
u
la

ri
ty

 R
e
la

ti
v
e
 t

o
 L

o
u
v
a
in

s-Nerstrand Metis

Figure 4: The modularity of clusterings generated by s-Nerstrand relative to
Louvain.

with higher modularities for cit-Patents, com-orkut, soc-LiveJournal1, and com-
friendster, at 2.7%, 3.7%, 2.4%, and 39.4% respectively. The high quality of
clusterings being generated by s-Nerstrand despite its aggregation approach
using only a single pass, is the result of the refinement performed on each of the
coarse graphs. The significantly higher modularity of clusterings found by s-
Nerstrand for com-friendster, is the result of s-Nerstrand being able to contract
the graph down to ten vertices, whereas Louvain stopped at over 50 thousand
and produced a much larger number of communities.

Due to its slower rate of contraction, Metis was unable to cluster the two
largest graphs in the 256GB of memory in our test machine. Metis is able to
produce clusterings with modularities that are within 1–2% of s-Nerstrand for
graphs with strong community structure (europe.osm and uk-2002), the edgecut
and modularity objectives both find areas of extremely low connectivity to place
cluster boundaries. However, for graphs with less strong community structures
(cit-Patents, soc-pokec, com-orkut, and soc-LiveJournal1), Metis produces clus-
terings that are 3–10% lower than s-Nerstrand as the two objectives diverge.
In addition to this, the number of clusters must be known a priori for the algo-
rithms in Metis.

The runtimes for generating clusterings for s-Nerstrand and Metis relative
to Louvain are shown in Figure 5. s-Nerstrand outperformed Metis and Louvain
for all graphs in this experiment in terms of computation time, and was 1.04–
4.25 times faster than Metis and 5.66-44.9 times faster than Louvain. The lower
runtime of s-Nerstrand than Metis is the result of its superior contraction rate
made possible by FCG aggregation that groups many vertices together at a time
while decreasing the edge density in resulting graphs. This difference in runtime
between s-Nerstrand and Louvain can be attributed to the different ways in
which aggregation is performed. In s-Nerstrand , each vertex is processed only
once, whereas Louvain repeatedly processes its vertices until a local maxima in
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Figure 5: The runtime of s-Nerstrand relative to Louvain.

modularity is found.
The scaling of s-Nerstrand with respect to the number of edges in the input

graph is shown in Figure 6, with 25 graphs from the DIMACS Challenge [32]
in addition to the eight listed Table 1. A line has been fitted to these point to
show their trend, with a slope of 183 nanoseconds per edge (or 55 million edges
per second). This shows for real world datasets s-Nerstrand demonstrates linear
scalability with a very small constant factor.

9. Parallel Results

In this section we present the results of our experiments for mt-Nerstrand .
We show that not only does it achieve significant speedup over s-Nerstrand and
outperforms other methods, but does so without making sacrifices in terms of
quality.

9.1. Graph Distribution

The effects on runtime of the different graph distribution strategies is shown
in Figure 7. The block-cyclic distribution was run with a block size of 4, 096.
Concerning the performance difference between a block distribution and a cyclic
distribution, we see an even split where the block distribution performs better
for half of the graphs and the cyclic distribution performs better for the other
half.

Overall, the block-cyclic distribution performed the best, being the fastest
distribution on five of the eight graphs, and on the three graphs where it was
not the fastest, it was second, showing its robustness as a distribution strategy.
This is because it combines the memory friendly ordering properties of the
block distribution and the load balancing properties of the cyclic distribution.
For the case where the block-cyclic distribution performed worse than the block
distribution, uk-2007-05, block-cyclic was as fast or faster in all steps except the
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most memory intensive step, contraction, where it was just over twice as slow.
However, if we increase the block size from 4, 096 to 16, 384, the block-cyclic
distribution becomes faster than the block distribution on this graph.

Where all three distribution schemes balance the number of edges across the
threads, the ratio of the maximum number of vertices to the average number
assigned to a thread, the vertex imbalance, was highest for the block distribu-
tion. The block distribution averaged a vertex imbalance of 4.60 for the eight
graphs, and was highest on uk-2007-05 at 9.12. The cyclic and block-cyclic dis-
tributions both averaged vertex imbalances of 1.36, and also had their highest
vertex imbalances on uk-2007-05 at 1.61 and 1.63 respectively.

Due to the block-cyclic distribution’s superior performance overall, it is the
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distribution used by Nerstrand in the experiments that follow (continuing to
use a block-size of 4, 096).

9.2. Quality

The effect on modularity of the parallelizing the serial algorithms in s-
Nerstrand for mt-Nerstrand can be seen in Figure 8. We have included the
results from Louvain, community-el , PLP , and PLMR for comparison. When
run with 16 threads, mt-Nerstrand shows only minor degradation in cluster
quality compared to its serial counter part, averaging 99.5% the modularity
of s-Nerstrand . This is 4.8% higher modularity than clusterings produced by
Louvain. Compared to other parallel methods using 16 threads, mt-Nerstrand
produced clusterings with 89% higher modularity than community-el , and 215%
higher than those produced by PLP . The clusterings produced by PLMR were
of near identical modularity to mt-Nerstrand , with mt-Nerstrand producing
clusterings of only 0.07% higher modularity.

The reason mt-Nerstrand is able to produce clusterings with modularity
similar to that of s-Nerstrand is that the quality of the coarsening and initial
clustering phases is unaffected by the number of threads. It is not until the
refinement step that we see a difference. This is the result of moves being made
with partially stale cluster states. However, our results show that this has an
extremely small effect on the quality.

The low quality of the clusterings produced by PLP , particularly on the
social network graphs which tend to have higher inter-cluster connectivity, is
due to it not directly optimizing modularity. However, on the web graphs and
the citation network where clusters have low inter-cluster connectivity, it was
able to find clusterings of modularity within a few percentage points of those
found by mt-Nerstrand .
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9.3. Scaling

The speedups achieved by mt-Nerstrand with respect to s-Nerstrand are
shown in Figure 9. The mean speedup for all eight graphs using 16 threads
was 6.2. The highest achieved speedup was 8.91 on the largest social network
graph, com-friendster, and the lowest speedup of 5.15 was on the patent citation
network, cit-Patents, which is also the smallest graph. We did not see as high of
a speedup on this graph as a result of refinement performing extra work when
done in parallel. For this graph, over twice as many refinement passes were
made when using 16 threads as compared to when run serially.

The k component of the O(m/p + n/p + k) parallel complexity of mt-
Nerstrand played relatively little role in the scaling, as its largest value was
for the uk-2007-05, at 760 thousand, far below the 3.3 billion edges and 105
million vertices. The smallest value for k was on com-friendster, at nine.

Figure 10 shows the runtimes of mt-Nerstrand , community-el2, PLP , and
PLMR, using 16 threads. The runtime relative to mt-Nerstrand is represented
by the height of each bar, while the absolute runtime in seconds is displayed at
the top of each bar.

The only method faster than mt-Nerstrand was PLP . Despite the added
overheads of using the multilevel paradigm which allows it to find clusterings of
significantly higher modularity, mt-Nerstrand is only on average 42% slower than
PLP using 16 threads, up to 204% slower for com-friendster, and for europe.osm
mt-Nerstrand was 142% faster. This high variability in runtime relative to the
size of the graph for PLP is due the number of iterations it takes for the labels to
fully propagate. For com-friendster it took seven iterations on average to find a
clustering solution, whereas for europe.osm it took 546 iterations on average to

2Timings for community-el on the uk-2002 and uk-2007-05 graphs were performed with its
coverage option to terminate the runs early (set to 75% and 50% respectively).
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Figure 10: The runtimes of the parallel clustering methods relative to mt-
Nerstrand , with their absolute runtimes listed above.

find a clustering solution. This expounds one of the strengths of the multilevel
paradigm. Where label propagation takes O(δ) iterations to propagate through
a cluster with a diameter of δ, the vertex contraction of mt-Nerstrand takes
only roughly O(log(δ)) levels to fully contract the cluster as groups of vertices
are recursively merged together.

The high parallel performance of mt-Nerstrand comes from being based on
the already fast algorithms of s-Nerstrand . During coarsening, one the most
time intensive steps of the multilevel paradigm, mt-Nerstrand is able to use the
same algorithm as s-Nerstrand , and scales well due to the unprotected group-
ing introduced in Section 6.2. The initial coarsening phase of s-Nerstrand is
inherently parallel, and scales well when all of the threads can fit their data
into the cache. Our parallel formulation of boundary refinement with the order-
independent updates described in Section 6.4, allows us to achieve high modu-
larity in a scalably parallel fashion.

10. Conclusion

In this paper we presented several approaches to solving the issues associ-
ated with adapting the multilevel paradigm for maximizing modularity in serial
and in parallel. We adapted the FirstChoice aggregation scheme from graph
partitioning, such that is able to maximize modularity. We showed that this ag-
gregation scheme works well for the modularity objective both in terms of quality
and in terms of speed. We introduced a robust and fast method for generating
clusterings of a contracted graph. We followed these with a modified version
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of boundary refinement for the modularity objective. We showed the combined
computational complexity of these algorithms is O(m+ n). We then presented
shared-memory parallel versions of these algorithms. This included a means of
performing group-based aggregation effectively in parallel, and introducing an
order independent method for updating cluster information during refinement
without the use exclusive locks. We showed that these shared-memory parallel
algorithms have parallel complexity of O(m/p+n/p+k) where p is the number
of threads and k is the number of clusters, and achieve speedups of 5.1–8.9 over
their serial counterparts.

We presented these solutions in the form of the multi-threaded graph clus-
tering tool Nerstrand , which is capable of producing high quality clusterings
of large graphs extremely fast. We evaluated this tool on graph with millions
vertices and billions of edges. Our tool finds clusterings of equal or better modu-
larity than current methods. Nerstrand is fast, finding these clusterings 4.5–27.2
times faster than competing methods that produce results of similar quality.
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technique for maximizing the modularity.

[9] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding
of communities in large networks, Journal of Statistical Mechanics: Theory
and Experiment 2008 (10) (2008) P10008.

[10] A. Noack, R. Rotta, Multi-level algorithms for modularity clustering, in:
Experimental Algorithms, Springer, 2009, pp. 257–268.

[11] J. Riedy, D. A. Bader, H. Meyerhenke, Scalable multi-threaded commu-
nity detection in social networks, in: Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th Inter-
national, IEEE, 2012, pp. 1619–1628.

[12] C. L. Staudt, H. Meyerhenke, Engineering high-performance community
detection heuristics for massive graphs, in: proceedings of the 2013 Inter-
national Conference on Parallel Processing, Conference Publishing Services
(CPS), 2013.

[13] S. Fortunato, Community detection in graphs, Physics Reports 486 (3)
(2010) 75–174.

[14] K. Wakita, T. Tsurumi, Finding community structure in a mega-scale social
networking service, in: Proceedings of IADIS international conference on
WWW/Internet 2007, 2007, pp. 153–162.

[15] U. N. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to
detect community structures in large-scale networks, Physical Review E
76 (3) (2007) 036106.

[16] S. Papadopoulos, Y. Kompatsiaris, A. Vakali, P. Spyridonos, Community
detection in social media, Data Mining and Knowledge Discovery 24 (3)
(2012) 515–554.

[17] B. O. Fagginger Auer, R. H. Bisseling, Graph coarsening and clustering on
the gpu, 10th DIMACS implementation challenge.

[18] G. Karypis, V. Kumar, Multilevel graph partitioning schemes, in: Proceed-
ings of The International Conference on Parallel Processing, CRC PRESS,
1995, pp. III–113.

[19] F. Pellegrini, J. Roman, Scotch: A software package for static map-
ping by dual recursive bipartitioning of process and architecture graphs,
in: Proceedings of the International Conference and Exhibition on High-
Performance Computing and Networking, HPCN Europe 1996, Springer-
Verlag, London, UK, UK, 1996, pp. 493–498.

[20] B. Monien, R. Diekmann, A local graph partitioning heuristic meeting
bisection bounds, in: 8th SIAM Conf. on Parallel Processing for Scientific
Computing, Vol. 525, Citeseer, 1997, p. 526.

35



[21] C. Walshaw, M. Cross, Mesh Partitioning: a Multilevel Balancing and
Refinement Algorithm, SIAM J. Sci. Comput. 22 (1) (2000) 63–80.

[22] P. Sanders, C. Schulz, Engineering multilevel graph partitioning algorithms,
in: C. Demetrescu, M. Halldrsson (Eds.), Algorithms - ESA 2011, Vol. 6942
of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2011,
pp. 469–480.

[23] H. N. Djidjev, M. Onus, Scalable and accurate graph clustering and com-
munity structure detection, IEEE Transactions on Parallel and Distributed
Systems.

[24] G. Karypis, V. Kumar, Multilevel k-way hypergraph partitioning, in: Pro-
ceedings of the 36th annual ACM/IEEE Design Automation Conference,
ACM, 1999, pp. 343–348.

[25] A. Abou-Rjeili, G. Karypis, Multilevel algorithms for partitioning power-
law graphs, in: Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International, IEEE, 2006, pp. 10–pp.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, 3rd Edition, The MIT Press, 2009, Ch. Priority queues.

[27] D. LaSalle, G. Karypis, Multi-threaded graph partitioning, in: Parallel
& Distributed Processing Symposium (IPDPS), 2013 IEEE 27th Interna-
tional, IEEE, 2013.
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