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ABSTRACT
Graph partitioning is an important preprocessing step in ap-
plications dealing with sparse-irregular data. As such, the
ability to efficiently partition a graph in parallel is crucial
to the performance of these applications. The number of
compute cores in a compute node continues to increase, de-
manding ever more scalability from shared-memory graph
partitioners. In this paper we present algorithmic improve-
ments to the multithreaded graph partitioner mt-Metis. We
experimentally evaluate our methods on a 36 core machine,
using 20 different graphs from a variety of domains. Our im-
provements decrease the runtime by 1.5−11.7× and improve
strong scaling by 82%.

1. INTRODUCTION
As the parallelism of modern processors increases, getting
performance out of applications with irregular data access
patterns is increasingly challenging. Graph partitioning is
an important pre-processing step for irregular applications
to achieve performance. On shared-memory platforms, graph
partitioning can be used to reduce inter-core communication
and cache misses.

Due to its importance, graph partitioning has received sig-
nificant attention for work distribution in parallel applica-
tions [18] and locality maximization [15]. Modern methods
rely on the multilevel paradigm [7] to find high quality solu-
tions extremely fast [11, 16, 17]. While distributed-memory
parallel partitioners [10, 4, 9] have been in use for almost
two decades, methods [19, 3, 12] that exploit the shared-
memory property of modern multicore processors have only
recently been explored. These shared-memory methods offer
improved performance and partition quality for partitioning
within a compute node.

The number of cores per compute node has recently in-
creased dramatically, and continues to do so. This demands
that graph partitioners exhibit increased parallelism and ef-
ficiently make use of the cache hierarchy. High-performance
single-node graph partitioners are an important stepping
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stone for future highly-scalable multi-node partitioners. Fully
exploiting node-internal parallelism can decrease the degree
of communication operations by one to two orders of mag-
nitude.

In this work, we present algorithmic improvements to the
mt-Metis multithreaded graph partitioning framework and
experimentally evaluate their effectiveness. We show that
these modifications significantly improve the performance
of mt-Metis on modern architectures and graphs. Specifi-
cally, our contributions are: 1) An efficient two-hop match-
ing scheme which works well on graphs with and without
highly skewed degree distributions. 2) Implementation level
coarsening optimizations. 3) An improved initial partition-
ing parallel formulation. 4) A method of performing par-
allel refinement that greatly reduces inter-core communica-
tion. These improvements cumulatively result in speedups
of 1.5− 11.7× and a geometric mean improvement of strong
scaling by 82%, while preserving partition quality on 20
graphs from a variety of domains.

2. BACKGROUND
The balanced graph partitioning problem is defined as cre-
ating k disjoint sets of vertices (partitions) which minimizes
the number of partition-spanning edges, with the constraint
that partitions be of near equal weight.

2.1 Multilevel Graph Partitioning
The most prevalent strategy for developing graph partition-
ing heuristics has been the multilevel paradigm [7]. The
multilevel paradigm works by aggregating vertices together
in the input graph, G0, to form a coarser (smaller) graph
G1. This process repeats until a sufficiently coarse graph
Gs is formed. This is known as the coarsening phase. Then,
in the initial partitioning phase, a partitioning is found of
the coarsest graph. This partitioning is then applied to the
next finer (larger) graph, Gs−1, and then the partitioning is
refined via a local-improvement technique. This process is
repeated until the partitioning is applied and refined on the
original graph. This is known as the uncoarsening phase.
Buluç et al. [2] provide an overview of state-of-the-art graph
partitioning techniques.

2.2 Multithreaded Graph Partitioning
In this work, we improve the performance of the mt-Metis [12]
multithreaded graph partitioner. The design of mt-Metis fo-
cuses on reducing data movement between processing cores



and memory banks. Each thread is assigned a contiguous
set of vertices and their incident edges a priori, such that the
number of edges per thread is roughly equal. Each thread
is then responsible for operations on their portion of the
graph and subsequently their portions of the graphs gener-
ated throughout the multilevel paradigm (G1, . . . , Gs). This
maximizes data re-use per thread, and reduces the number
of synchronization primitives required to ensure correct ex-
ecution.

Each level of coarsening is made up of two parts: aggregation
and contraction. In aggregation, each thread selects pairs of
vertices connected by an edge to be merged together. In
contraction, each thread constructs the portion of the graph
it will own in the next level. Coarsening continues until
either the size of the coarsest graph is within a multiple of
the number of partitions, or the rate of coarsening slows
below some threshold.

Once coarsening stops, several initial partitionings are cre-
ated of the coarsest graph in parallel, and the best parti-
tioning is selected.

Uncoarsening is made up of projection and refinement steps.
In projection, the partition assigned to a coarse vertex is pro-
jected to its fine vertices. In refinement, each thread is re-
sponsible for selecting which of its vertices to move between
partitions. As vertices are moved, updates to their neigh-
boring vertices are communicated between threads asyn-
chronously, so as use as up-to-date information as possible
when deciding to move a vertex.

3. ALGORITHMIC IMPROVEMENTS
Our algorithmic modifications encompassed all phases of the
multilevel paradigm, including aggregation, contraction, ini-
tial partitioning, and refinement.

3.1 Two-Hop Matching
Traditionally, vertices are aggregated together by finding
maximal independent sets of edges to contract. This works
well because it reduces the number of exposed edges on the
graph (and subsequently exposed edge weight), and keeps
the size of any coarse vertex from growing much faster than
others. However, graphs with highly skewed degree distri-
butions often contain only small maximal independent sets
of edges. This causes the next coarser graph to be of similar
size, and can cause many vertices to not grow in size at all
between successive graphs.

To address this issue, we relax the constraint that two ver-
tices being aggregated together must be connected via an
edge. Instead, we allow two vertices to be aggregated to-
gether if they have a common neighbor. That is, if they
are two-hops away on the graph. This has been investigated
before in the context of finding vertex separators [6, 8] (to
preserve sparsity in direct sparse methods) and graph clus-
tering [1, 13].

To ensure we do not disrupt the quality achieved by tradi-
tional matching methods, we use two-hop matching as a sec-
ondary pass over the vertices after a maximal matching has
been found. We group unmatched vertices that are two-hops
from each other into three classes: leaves, twins, relatives.

Leaf vertices are of degree one, and if they share the same
parent, they are desirable to aggregate together. Twin ver-
tices are vertices which have identical neighbor lists. Rela-

tive vertices are vertices which are two hops away but do not
have identical sets of neighbors. We conditionally find and
match each of these classes in the same order. If we have
successfully matched over 75% of the vertices in the graph,
no two-hop matching is performed. Otherwise, leaf vertices
are matched together. If after matching leaf vertices, less
than 75% of the vertices are matched, we then perform twin
matching. Finally, if this still does not yield a sufficiently
large matching (75%), we then match relatives. Finding all
three classes can be done in O(n logn) time, but is often
linear in the number of unmatched vertices.

3.2 Coarsening Optimizations
During contraction we must translate adjacency lists to point
at the new coarse vertices and merge adjacency lists of ver-
tices that have been aggregated together. From a matrix
standpoint, this involves merging columns and rows of the
adjacency matrix together. In our previous work [12], we
used a hash table to accumulate values for each coarse ver-
tex’s adjacency list if the maximum degree of the graph was
small, and used a dense vector when the maximum degree
was large. For graphs with skewed vertex degree distribu-
tions, this is undesirable as the majority of the vertices have
adjacency lists which can be merged in a hash table with
few collisions.

Instead, we do a pass over the coarse vertices to be generated
and calculate an upper bound for the degree of each coarse
vertex. We then contract all low degree vertices first using
a hash table, followed by contracting high degree vertices
using a dense vector.

During both aggregation and contraction, most of the mem-
ory accesses are through indirection arrays. In order to re-
duce the effects of latency, we use software prefetching. In
aggregation, this consists of prefetching the locations of the
match vector for neighbor vertices. During contraction, we
prefetch the location of the coarse vertex mapping for the
vertices in the adjacency lists.

3.3 Cache Oriented Initial Partitioning
The past approach for creating the initial partitioning re-
lied on the fact that the coarsest graph was relatively small,
and thus the amount of work required to create a parti-
tioning was small. In the past approach, several threads
would create initial partitionings via recursive bisection in-
dependently, avoiding synchronization overheads. However,
parallelism in the initial partitioning phase is then limited
to the number of partitionings to be created.

Our new method instead conditionally splits the threads into
independent groups to reduce inter-core communication, if
the coarsest graph is small enough with respect to the num-
ber of threads. If the coarsest graph is large enough with
respect to the number of threads, the threads will cooper-
atively work together to create the initial bisection. The
threads will then split into two groups and recursively parti-
tion each half of the graph. If the size of the coarsest graph
is small enough with respect to the number of threads, the
threads then break up into several groups, and each group
independently generates a partitioning of the graph.



(a) (b)
Figure 1: The different shades vertices are assigned to different
threads. The original assignment is shown in (a), where vertices
in the boundary of the same partition may be assigned to many
different threads. The new assignment is shown in (b), where
boundary vertices of each partition have been assigned to a single
thread.

Table 1: Graphs
Graph Vertices Edges Max Deg
333SP 3,712,815 11,108,633 28
AS365 3,799,275 11,368,076 14
NLR 4,163,763 12,487,976 20
asia.osm 11,950,757 12,711,603 9
hugetrace-00020 16,002,413 23,998,813 3
road usa 23,947,347 28,854,312 9
Serena 1,391,349 31,570,176 248
audikw1 943,695 38,354,076 344
dielFilterV3real 1,102,824 44,101,598 269
delaunay n24 16,777,216 50,331,601 26
europe.osm 50,912,018 54,054,660 13
Flan 1565 1,564,794 57,920,625 80
nlpkkt240 27,993,600 373,239,376 27
flickr 820,878 6,625,280 10,891
eu-2005 862,664 16,138,468 68,963
soc-pokec 1,632,803 22,301,964 14,854
wikipedia-2007. 3,566,908 42,375,912 187,671
soc-LiveJournal1 4,847,571 42,851,237 20,333
com-orkut 3,072,441 117,185,083 33,313
uk-2002 18,520,486 261,787,258 194,955

3.4 Boundary Re-assignment
In our previous work [12], threads performed refinement on
the vertices they were assigned at graph generation (or in-
put for the first level) and are on the partition boundary.
This can result in boundary vertices being scattered among
threads as illustrated in Figure 1a. Any time a vertex is
moved, vertices owned by other threads must be updated.
Handling these updates asynchronously means a lot of time
is wasted processing small messages from other threads dur-
ing refinement. Handling these updates in large batches at
the end of each iteration can result in extra work being per-
formed in the form of suboptimal or discarded moves.

To address this issue, we introduce the notion of boundary re-
assignment. During the projection step of uncoarsening, we
change the thread assignment of boundary vertices, so that
rather than each thread owning vertices scattered through-
out the boundary, each thread owns a relatively continu-
ous chunk of boundary vertices as seen in Figure 1b. We
change the assignment of only boundary vertices so as to
minimize the cost of this re-assignment. Partitions are as-
signed to threads via hashing, and the boundary vertices
are re-assigned to the threads to which their partitions were
assigned. Throughout all iterations of the current level of
refinement a thread is responsible for moving and updating
the vertices which it was received in this process. When
a vertex is pulled into the boundary, it is assigned to the
thread that owns the partition in which it resides.

4. EXPERIMENTAL METHODOLOGY
The graphs used in our experiments are listed in Table 1.
They are divided into two groups: those with normal de-
gree distributions, and those with skewed degree distribu-

tions. The group of graphs with normal degree distributions
are from the University of Florida Sparse Matrix Collection
(UFSMC) [5]. These graphs are a combination of scientific
meshes, road networks, and non-linear programming matri-
ces. The group of graphs with skewed degree distribution
are from UFSMC and the Stanford Large Network Dataset
Collection [14]. These are a combination of web and social
networks.

The runtimes presented in the following sections are the
mean of ten runs of the partitioners using different random
seeds.

We used an IntelR© XeonR©1 E5-2699 v3 processor based
system for the experiments. The system consists of two
processors, each with 18-cores running at 2.3 GHz (a to-
tal of 36 cores) with 45 MB L3 cache and 64GB memory.
For comparing the effectiveness of the two-hop aggregation,
we used KaHIP version 0.71c from http://algo2.iti.kit.

edu/documents/kahip/index.html.

5. RESULTS
Two-hop matching significantly reduces runtime, up to 7.0×
for uk-2002, and a geometric mean for the seven skewed-
degree graphs of 2.0×, as it allows the number of vertices
in the graph to reduce by almost half at each level. The
speedup from two-hop matching also brought with it an im-
provement in quality, decreasing the geometric mean of the
number of cut edges by 3.2%. We also compared the ef-
fects of two-hop matching against KaHIP’s label propaga-
tion based aggregation. While KaHIP finds partitionings
with lower edgecuts on the graph with strong community
structure, and had a lower geometric mean edgecut for the
seven graphs by 14.4%, it had a geometric mean runtime for
the seven graphs 4.4× higher than mt-Metis with two-hop
matching.

Our coarsening optimizations resulted in a geometric mean
speedup for the coarsening phase of 1.6× for all 20 graphs.
Software prefetching resulted in large gains for the denser
mesh-style graphs where we had a sufficient number of edges
per vertex with which to look ahead. For the larger network
style graphs, our two part contraction using both a hash
table and a dense vector, played a large role in achieving
near 2× speedups.

Our improvements to parallel refinement significantly re-
duced the runtime of the uncoarsening phase, a geometric
mean decrease of 35%. The largest reduction in runtime was
60%, for the road network, europe.osm.

We present the net effects of our improvements in Figure
2, where we compare the parallel speedup of our algorith-
mic improvements in mt-Metis-opt with mt-Metis using 36
threads, relative to that of mt-Metis run serially. The geo-
metric mean reduction in runtime was 49%, or a speedup of
1.96×, for out algorithmic improvements.

For the 20 graphs a range of speedups of 1.5 − 11.7× was
observed. The top of this range was achieved on uk-2002.
This is largely due to the improved coarsening from two-
hop matching, but was also influenced by large gains from
our coarsening optimizations and restructured initial parti-
tioning. The geometric mean cut for the twenty graphs re-
mained relatively unchanged with our algorithmic improve-

1
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Figure 2: Comparison of runtime of mt-Metis-opt with mt-Metis, using 36 threads and k = 64.

ments (0.7% higher for mt-Metis-opt, due to higher edgecuts
on the road networks).

Where previously mt-Metis achieved a geometric mean speedup
of 6.3× using 36 threads, held back in part by poor scaling
on skewed degree distribution graphs, with our changes mt-
Metis-opt scales to 11.4× (12.3× compared to mt-Metis).
This is an improvement of 82%. For the skewed degree
distribution graphs, two-hop matching shifts much of the
runtime into the coarsening phase, which tends to scale the
best as it has a large amount of work per thread with little
synchronization required. Furthermore, our changes to ini-
tial partitioning and uncoarsening, increase the scalability of
the remaining time. This is evident when looking at the still
substantial speedups for the graphs with non-skewed degree
distributions.

6. CONCLUSION
In this paper we presented several modifications to the shared-
memory parallel graph partitioner mt-Metis. These modi-
fications resulted in performance increases of 1.5 − 11.7×,
and increased strong scaling by 82%, while preserving parti-
tion quality. Our modifications include an efficient method
for performing two-hop matchings, a new parallel formu-
lation of initial partitioning, a method for reducing com-
munication during uncoarsening, and implementation level
optimizations for coarsening.
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