
A Parallel Hill-Climbing Refinement Algorithm for
Graph Partitioning
Dominique LaSalle and George Karypis

Department of Computer Science & Engineering,
University of Minnesota, Minneapolis, MN 55455, USA

{lasalle,karypis}@cs.umn.edu

Abstract—Graph partitioning is important in distributing
workloads on parallel compute systems, computing sparse matrix
re-orderings, and designing VLSI circuits. Refinement algorithms
are used to improve existing partitionings, and are essential for
obtaining high-quality partitionings. Existing parallel refinement
algorithms either extract concurrency by sacrificing in terms of
quality, or preserve quality by restricting concurrency. In this
work we present a new shared-memory parallel algorithm for
refining an existing k-way partitioning that can break out of local
minima and produce high-quality partitionings. This allows our
algorithm to scale well in terms of the number of processing cores
and produce clusterings of quality equal to serial algorithms. Our
algorithm achieves speedups of 5.7−16.7× using 24 cores, while
exhibiting only 0.52% higher edgecuts than when run serially.
This is 6.3× faster and 1.9% better quality than other parallel
refinement algorithms which can break out of local minima.

I. INTRODUCTION

Graph partitioning is used in a broad range of applications
for decomposing sparse data into components with minimal
interdependencies. Graph partitioning algorithms balance the
vertices among partitions, and attempt to minimize the number
of partition spanning edges. The quality of the partitioning
plays a crucial role in the performance of applications. The
size of graphs that need to be partitioned in these applications
has dramatically increased. However, the majority of increases
in computer processing power have been achieved by increases
in the number of processing cores per chip and not by increases
in the throughput of the cores themselves. This makes it
imperative for graph partitioning algorithms to express a high
degree of parallelism so as to take advantage of modern
processors.

Modern solutions to the graph partitioning problem rely
on the multilevel paradigm, which follows a simplify and
conquer methodology. The graph is coarsened for several
levels, a partitioning is found on the coarsest graph, and
then is iteratively improved as the graph is uncoarsened. One
of the major factors that determines the effectiveness of the
multilevel paradigm is the refinement technique used to make
local improvements to the partitioning as it is applied from
the coarse levels to the fine levels.

Refinement algorithms that can break out of local minima
in terms of the number of edges being cut by a partitioning
can lead to substantially better solutions than those algorithms
that can not. The FM [1] refinement algorithm relies on
a move-and-revert strategy in order to break out of these

local minima. Vertices are speculatively moved when their
movement increase the number of edges being cut. If a
partitioning with a lower edgecut is found after several moves
it is saved. Otherwise, the partitioning is reverted back to
the observed state with the lowest number of edges cut.
However, if these speculative moves are not localized to the
same part of the graph they become ineffective. Later methods
such as CLIP/CDIP [2] and Multi-Try FM [3] addressed this
issue by constraining these speculative moves to be adjacent.
These move-and-revert refinement algorithms are inherently
serial due to their need to evaluate and possibly save the
partitioning’s state after each move. Algorithms like k-way
Pairwise FM [4] attempt to parallelize these schemes by using
two-way refinement between pairs of independent partitions
concurrently. This however can be time intensive and has
limited parallelism.

In this paper we propose the Hill-Scanning algorithm,
a shared memory parallel refinement algorithm capable of
breaking out of local minima. Unlike its predecessors, this new
method exhibits a high degree of parallelism and as a result
exhibits significant speedup over other methods. In the serial
environment, we show that Hill-Scanning produces solutions
of equal quality to Multi-Try FM. We show that Hill-Scanning
is up to 6.3× faster than other parallel refinement methods
with hill-climbing capabilities when running on 24 cores.
Hill-Scanning produces solutions with 6.3% lower edgecut
than parallel Greedy refinement and 1.9% lower edgecut than
parallel k-way Pairwise FM. We present strong scaling results
on up to 24 cores and show that Hill-Scanning achieves
speedups of 5.7 − 16.7×, while exhibiting only a 0.52%
increase in edgecuts over its serial counterpart.

II. DEFINITIONS & NOTATION

The graph partitioning problem takes as input a simple
undirected graph G = (V,E), consisting of a set of vertices V ,
and a set of edges E. Each edge is composed of an unordered
pair of vertices (i.e., v, u ∈ V). We use n = |V | to denote the
number of vertices, and m = |E| to refer to the number of
edges.

The objective of graph partitioning is to create k disjoint
subsets of vertices (partitions), V = V1∪. . .∪Vk, that minimize
the number of edges between vertex sets. The total weight of

the these partition spanning edges is referred to as the edgecut:

edgecut =

k∑
i=1

∑
v∈Vi

∑
u∈Γ(v),u/∈Vi

θ{v, u},

where Γ(v) is the set of vertices connected by edges to v.
In this work, we are concerned with the balanced graph

partitioning problem, in which the size (weight) of each
partition is bounded by a balance constraint ε. That is,

k
maxi |Vi|
|V |

≤ 1 + ε.

III. BACKGROUND

Because the graph partitioning problem is NP-Hard [5],
many advanced heuristics have been developed. The multilevel
paradigm for graph partitioning has become the de facto
standard for developing high-performance and high quality
algorithms [6], [7], [8], [3]. The multilevel paradigm computes
the partitioning of a graph in three phases. In the coarsening
phase a series of coarser (smaller) approximations of the
original graph G0 are found, G1, . . . , Gs. Then, in the initial
partitioning phase, a partitioning is found for the coarsest
graph Gs. In the uncoarsening phase, the partitioning is pro-
jected back down through the series graphs, and is improved
on each graph as the degrees of freedom of the solution
increase with the number of vertices.

The first phase, coarsening, captures much of the connec-
tivity information of the graph by collapsing well connected
vertices together. As vertices and edges are combined during
coarsening, their weights are updated accordingly such that
a balanced partitioning of the coarsest graph is a balanced
partitioning of the finest graph with the same edgecut. Because
coarsening contracts most of the edges in the graph, relatively
simple methods can be used during the initial partitioning
phase. The most common approach is to induce a partitioning
via a truncated breadth first search and then apply refinement
to the partitioning [9]. The last phase, uncoarsening, is made
up of two alternating steps: projection and refinement. In
projection the partition label of each coarse vertex is applied
to the fine vertices that compose it. As no vertices are moved
between partitions during projection, the edgecut and the
partition weights remain unchanged. It is during refinement
that vertices are moved, resulting in changes to the edgecut
and the partition weights.

While the multilevel paradigm has been shown to produce
solutions of good quality as result of the contracted edge
weight [10], refinement techniques capable of breaking out
of local minima offer a means to explore a wider range of
solutions, and finding partitionings of higher quality.

The Greedy [7] algorithm, is an extremely fast method for
converging on a local minima. The Greedy algorithm works by
making several iterations over the vertices located on partition
boundaries until no improvement is made in an iteration, or a
maximum number of iterations has been performed. In each
iteration, vertices are moved individually in descending order

of gain (reduction in edgecut) until there are no more positive
gain moves to be made.

Further decreasing the edgecut beyond a local minima,
requires moving more than one vertex. A hill is a set of vertices
whose collective movement results in a reduction of edgecut,
but the movement of any subset does not. Each member of
a hill will have more edge weight connecting it to the group
than to any one partition (excluding the other members of
the group). The process of speculatively moving individual
vertices so as to find a new local minima is referred to as hill-
climbing. Moving individual vertices speculatively allows for
moving enough members of these groups such that each of the
remaining unmoved members will result in edgecut reductions.
The capability to hill-climb defines a class of high-quality
refinement techniques.

IV. RELATED WORK

One of the most widely used refinement methods is the
Fiduccia-Matteyses (FM) [1] algorithm. At each step in the
algorithm, the vertex whose movement between partitions
would result in the largest decrease in edgecut and still result in
a balanced partitioning is found. This is accomplished by using
two priority queues to identify the vertex of maximum gain
(largest decrease in edgecut) in each partition. If a vertex from
either partition can be moved without violating the balance
constraint, then the priority queue with the highest gain vertex
is selected. Otherwise, the priority queue for moving vertices
to the lower weight partition is selected. All possible moves
are made before the algorithm reverts back to the best observed
state.

In order to refine a k-way partitioning, Gong and Lim [4]
introduced k-way Pairwise FM (KPM) refinement, which
identifies independent pairs of partitions and performs FM on
these pairs. Then, a new set of independent pairs is selected
and refined. This repeats until all partition boundaries have
had refinement applied. Because this method directly refines
a k-way partitioning, it can lead to partitionings with lower
edgecut than using FM via recursive bisection. Parallelism can
be extracted by refining these independent pairs of partitions
concurrently.

One undesirable side effect of selecting the vertex of
maximum gain at each step is that for two vertices moved in
sequence when refining large graphs it is unlikely that those
two vertices will have common neighbors. While this still
works for vertices whose movement decreases the edgecut,
for speculative vertex moves (which increase the edgecut), it
interferes with finding new local minima.

To address this issue, Dutt and Deng [2] proposed the
CLIP/CDIP variants of FM. After all vertices have been
inserted into the priority queue, the vertices have their priority
set to zero while preserving the order in the queue. Then, the
top vertex v is extracted and moved, and all of its neighbors
have their priorities updated. This results in the priorities of
all the neighbors of v being set equal to the change in gain
resulting from v’s movement. The neighbors of v in v’s new
partition receive negative priorities as they now have one less

edge connecting them to the opposing partition. The neighbors
of v in v’s original partition receive positive priorities as they
now have one more edge connecting them to the opposing
partition. The vertices remaining in the priority queue are then
moved as in FM. This ensures that the subsequent moves are
neighbors of v from the same partition, and makes it more
likely that a hill will be moved.

In order to use to FM to refine k-way partitionings and
enforce the localized search pattern of CLIP/CDIP, Sanders
and Schulz [3] introduced Multi-Try FM. It uses multiple
small trials of FM per iteration. A trial consists of inserting a
random boundary vertex, the seed vertex, into a priority queue.
Once this vertex is extracted and moved, its neighbors from
its original partition are added to the priority queue and FM
proceeds as normal. Once the trial terminates, a new unvisited
seed vertex is selected and this process continues until all
boundary vertices in the graph have been visited.

V. HILL-SCANNING REFINEMENT

In this section we present our new algorithm for refin-
ing k-way partitions in parallel. Our algorithm, named Hill-
Scanning, fills the gap between serial refinement algorithms
capable of breaking out of local minima, and parallel greedy
algorithms capable of utilizing multicore systems.

The Hill-Scanning algorithm is based on the observation
that the move-and-revert strategy used by FM and its variants,
breaks out of local minima by pulling hills across partition
boundaries. However, this approach has two shortcommings.
First, it is inherently serial, as a linear ordering of moves is
needed in order accurately track edgecut and revert partitioning
states. Second, each hill is only considered for moving to a
single partition rather than to the partition of a largest net gain.
That is, it may be the case that while the first vertex in the
hill is connected to partition i with the majority of its edge
weight, the hill as a whole may be connected to partition j
with a larger total edge weight.

The Hill-Scanning algorithm, at a high level, works by
identifying hills and treating them as a single entity when
considering which vertices to move. On a shared memory
system where all processing elements have access to all of the
data, hills can be efficiently identified and moved in parallel.

Each iteration works as follows. First, all of the boundary
vertices, those with edges connecting them to other partitions,
are inserted into a priority queue.

The gain associated with moving a vertex to partition i is:

gain = dPi
(v)− dint(v),

where dPi
(v) is the sum of the edgeweight connecting v to the

partition i and dint(v) is the sum of the edgeweight connecting
v to the partition in which it resides. We use an approximation
of this gain for all incident partitions as the priority:

priority =
dext(v)√

∆(v)
− dint(v),

where dext(v) is the sum of the edgeweights connecting v to
partitions other than the one in which it resides and ∆(v) is
the number of external partitions to which v is connected.

Vertices are extracted from this queue and are considered
for moving. If the actual gain associated with moving a vertex
v is positive, and moving v would not violate the balance
constraint, v is moved, and its neighbors are updated in the
priority queue. Vertices with zero gain will still be moved if
it improves the balance of the partitioning.

If the gain associated with moving a vertex v is not positive,
an attempt is made to find a hill rooted at v. If a hill is
identified rooted v whose movement would result in a positive
gain, the hill is moved.

A hill is found by first initializing an empty hill, and
inserting the root vertex v into the priority queue. The hill
is then grown by extracting vertices from the priority queue
and adding them to the hill. If the gain associated with moving
the entire hill is positive, the loop exits and the hill is returned.
Otherwise, the neighbors of u in the same partition are added
to the priority queue and the search continues. If the hill
reaches the maximum allowable size and would not result in
positive gain if moved, it is discarded.

To keep the runtime down, each time an edge is traversed
when searching for a hill, it is marked as traveled for that
direction. During each iteration, an edge will be traversed
at most once in each direction. This prevents vertices from
being repeatedly inserted into the priority queue as hills are
discarded. Furthermore, we observed that hills built earlier in a
refinement pass were far more likely to be moved than those
later in the pass. As such, an iteration is ended early when√
b(V) hills have been built and discarded, where b(V) is the

number of vertices on the boundary (i.e., vertices with edges
connecting them to vertices in the opposing partition).

The move-and-revert strategy of FM like algorithms is
difficult to parallelize due to the need of a strict ordering of
moves. While methods have been proposed for running FM
on independent subgraphs [11], these require some degree of
pre-partitioning. Because Hill-Scanning does not use a move-
and-revert strategy, we can use coarse grained parallelism.
The movement of vertices in Hill-Scanning is similar to that
in Greedy refinement, so we model the parallelization of
Hill-Scanning after the method [12] for parallelizing Greedy
refinement on shared-memory architectures.

Each refinement iteration is split into two phases: upstream
and downstream. During the upstream phase, vertices are only
considered for moving to partitions with higher labels than the
label of the partition in which they currently reside. In the
downstream phase, vertices are only considered for moving to
partitions with lower labels. Threads insert the vertices they
own into local priority queues. They then proceed to extract
and move vertices from their priority queues in the same
manner as the serial version of the algorithm. When building
a hill, threads may select vertices owned by other threads.
Updated information regarding the state of the partitioning and
vertex locations are communicated asynchronously between
threads via message queues. Once all threads have emptied
their priority queues, they synchronize and begin the next
phase of the refinement iteration. Refinement stops when no
moves are made during an iteration, or the maximum number

of iterations has been reached.

VI. EXPERIMENTAL SETUP

Table I shows various information about the graphs used in
the experiments presented in Section VII. These are undirected
graphs. The first set of graphs (wing through auto) are all
graphs with greater than 100, 000 edges from the Graph
Partitioning Archive [13]. The second set of graphs are the
non-zero patterns of some of the largest matrices from the
University of Florida Sparse Matrix Collection [16].

These experiments were performed on a machine with 2×
12 core Xeon E5-2680v3 @ 2.5GHz processors and 64GB of
memory. The operating system was CentOS 6.6, running the
Linux kernel version 2.6.32. The code was compiled using
GCC 4.9.2. We implemented HS, and the other refinement
algorithms in the mt-Metis multithreaded graph partitioning
framework. The version used for these experiments is mt-Metis
4.4. The matching scheme used is Heavy Edge Matching [9].
Each refinement scheme terminates when an iteration com-
pletes without any moves, or a maximum of 8 iterations have
been performed.

VII. RESULTS

The serial runtime and edgecut of the partitionings produced
by the different refinement schemes are shown in Table II.
The results presented are the geometric mean of 25 runs.
Runtime includes the entire multilevel process: coarsening,
initial partitioning, and uncoarsening. The entire time is shown
rather than just the time for refinement in order to include the
overhead associated with the recursive bisection required by
RB-FM [1] in our comparison, as well as to place the runtime
cost of the refinement schemes in perspective.

Greedy [7] refinement is the fastest method, but also results
in the worst quality (highest edgecuts). It is faster than the
other methods not only because it does fewer calculation per
vertex moved, but also because it tends to move fewer vertices.
The HS algorithm was the second fastest method, and the
multilevel process using HS took only 27.1% longer than
using Greedy in this serial setting. HS resulted in the lowest
mean edgecut and had the smallest mean edgecut on 14 of
the 30 graphs. MTFM had a geometric mean edgecut for the
30 graphs 1% higher than HS, and had the smallest mean
edgecut on three of the graphs. Both HS and MTFM focus on
making localized k-way moves, which is why their behavior
when run serially is similar. However, HS, unlike MTFM [3],
can be efficiently parallelized.

KPM [4] found solutions of similar quality to HS and
MTFM, and had the lowest mean edgecut for eleven of the 30
graphs, most of which were the larger graphs. This is because
on the larger graphs, more vertices could be moved between
a pair of partitions without violating the balance constraint.
KPM however, was also the slowest method, especially on the
larger graphs. This high runtime is the result of running FM
on each connected pair of partitions, which for partitionings
with relatively dense partition connectivity can be exceedingly
expensive.

 0

 5

 10

 15

 20

 0 5 10 15 20 25

R
e
la

ti
v
e
 S

p
e
e
d

u
p

Threads

AS365
NLR

adaptive
ldoor

Serena
audikw1

channel-500x.
dielFilterV3.

Flan_1565
nlpkkt240

(a)

 0.9

 0.95

 1

 1.05

 1.1

 0 5 10 15 20 25

R
e
la

ti
v
e
 E

d
g

e
cu

t

Threads

AS365
NLR

adaptive
ldoor

Serena
audikw1

channel-500x.
dielFilterV3.

Flan_1565
nlpkkt240

(b)

Fig. 1: Strong scaling of Hill-Scanning: (a) relative speedup,
(b) relative edgecut.

Figure 1a shows the scaling of the HS algorithm with
respect to the number of threads (strong scaling). Here we are
measuring only the time spent in refinement, and not the time
spent in the rest of the phases of the multilevel paradigm. HS
achieves speedups between 5.7× and 16.7×, with a geometric
mean of 9.3× using 24 threads. This compares to a geometric
mean speedup for the parallel Greedy algorithm of only 2.7×.
Because HS performs more work per iteration (more vertices
visited and more vertices moved), the overheads associated
with parallelizing refinement are a smaller fraction of the
runtime. Furthermore, HS is able to achieve a degree of
dynamic load balancing. This is because each edge can only
be traversed at most twice, and as threads find hills they
essentially steal work from each other by traversing edges
connected to the vertices of other threads.

Figure 1b shows the relative edgecut as the number of
threads increases. The resulting edgecut changed only slightly
for most of the graphs as the degree of parallelism was
increased. The edgecut increased the most for ldoor, going up
by 2.7%, and decreased the most for Flan 1565, decreasing
1.7%. However, after eight threads, these changes largely
plateau as we increase the number of threads to 24. The
geometric mean increase across all ten graphs was only 0.52%,
demonstrating the stability of parallel HS.

We compare the total runtime of the entire multilevel pro-
cess using the four parallel refinement schemes in Figure 2a.
The geometric mean runtimes for RB-FM, KPM, and HS using

TABLE I: Graphs used for experiments

Graph [13] Vertices Edges Graph Vertices Edges Graph Vertices Edges
t60k 60,005 89,440 wing 62,032 121,544 AS365 [14] 3,799,275 11,368,076
fe pwt 36,519 144,794 fe body 45,087 163,734 NLR [14] 4,163,763 12,487,976
vibrobox 12,328 165,250 finan512 74,752 261,120 adaptive [15] 6,815,744 13,624,320
bcsstk33 8,738 291,583 bcsstk29 13,992 302,748 ldoor [16] 952,203 22,785,136
brack2 62,631 366,559 fe ocean 143,437 409,593 Serena [17] 1,391,349 31,570,176
fe tooth 78,136 452,591 bcsstk31 35,588 572,914 audikw1 [16] 943,695 38,354,076
fe rotor 99,617 66,2431 598a 110,971 741,934 channel-500x. [18] 4,802,000 42,681,372
bcsstk32 44,609 985,046 bcsstk30 28,924 1,007,284 dielFilterV3. [19] 1,102,824 44,101,598
wave 156,317 1,059,331 144 144,649 1,074,393 Flan 1565 [17] 1,564,794 57,920,625
m14b 214,765 1,679,018 auto 448,695 3,314,611 nlpkkt240 [20] 27,994,600 373,239,376

TABLE II: Edgecut and serial runtimes for 64-way partitionings with a 0.03 balance constraint.

Greedy RB-FM KPM MTFM HS
Graph Edgecut Time (s) Edgecut Time (s) Edgecut Time (s) Edgecut Time (s) Edgecut Time (s)
t60k 2,565 0.085 2,433 0.202 2,378 0.481 2,445 0.108 2,401 0.109
wing 9,727 0.146 9,074 0.309 8,783 1.351 8,772 0.248 8,592 0.220
fe pwt 9,451 0.091 9,124 0.204 8,776 0.485 8,929 0.132 8,775 0.126
fe body 5,710 0.079 5,236 0.221 5,289 0.429 5,458 0.097 5,352 0.096
vibrobox 54,046 0.205 54,799 0.293 53,405 0.994 53,028 0.232 52,835 0.247
finan512 11,500 0.148 10,710 0.395 11,388 0.803 11,632 0.297 11,350 0.183
bcsstk33 116,821 0.237 117,623 0.280 114,427 0.725 114,168 0.257 114,322 0.273
bcsstk29 63,929 0.127 62,348 0.266 61,149 0.485 63,432 0.138 62,413 0.148
brack2 29,805 0.150 28,721 0.408 28,104 1.113 28,555 0.219 28,414 0.217
fe ocean 27,312 0.198 23,011 0.586 22,826 2.032 23,385 0.364 22,896 0.349
fe tooth 39,987 0.169 39,009 0.484 38,219 1.365 38,261 0.273 38,032 0.265
bcsstk31 67,391 0.168 65,103 0.386 63,852 0.953 65,470 0.215 64,568 0.225
fe rotor 52,616 0.199 51,553 0.667 50,279 1.953 50,815 0.336 50,251 0.326
598a 63,413 0.225 63,346 0.745 60,299 2.303 60,756 0.401 60,440 0.370
bcsstk32 107,911 0.170 102,943 0.535 102,382 1.021 104,614 0.215 103,550 0.220
bcsstk30 190,499 0.193 187,906 0.546 183,650 0.968 186,719 0.237 185,576 0.257
wave 95,460 0.274 95,142 0.952 91,778 2.859 90,803 0.522 90,515 0.485
144 88,039 0.264 87,836 0.964 84,254 2.827 84,245 0.490 83,643 0.455
m14b 109,570 0.335 108,677 1.411 103,996 3.484 104,563 0.625 103,878 0.576
auto 191,400 0.681 191,933 2.841 183,624 6.652 181,215 1.355 180,367 1.203
AS365 54,767 3.154 52,993 15.519 51,943 15.984 50,740 3.822 50,356 3.669
NLR 60,287 3.538 58,430 17.249 57,437 17.553 55,775 4.319 55,378 4.134
adaptive 48,634 4.452 44,364 20.789 44,149 24.593 42,651 5.911 42,344 5.330
ldoor 439,153 1.624 420,011 9.834 414,884 5.846 421,377 1.771 415,463 1.816
Serena 1,852,915 3.140 1,869,282 15.720 1,813,903 31.495 1,762,200 5.079 1,760,964 4.828
audikw1 2,945,167 3.269 2,976,115 17.174 2,838,997 23.877 2,830,537 4.941 2,835,015 4.951
channel-500x. 1,356,670 6.633 1,274,048 31.187 1,305,570 64.801 1,274,548 12.781 1,260,250 11.258
dielFilterV3. 2,442,877 3.652 2,432,023 20.173 2,321,037 26.516 2,335,146 5.272 2,321,886 5.054
Flan 1565 2,463,890 4.376 2,392,417 25.932 2,317,798 19.220 2,344,077 5.412 2,335,178 5.846
nlpkkt240 10,303,386 65.096 10,326,787 297.996 10,171,102 156.130 9,751,898 96.392 9,763,379 108.195
Geo. Mean 105760.6 0.540 102440.1 1.795 100294.6 3.457 100542.3 0.791 99634.8 0.764

The five refinement algorithms: Greedy, Parallel Recursive Bisection FM (RB-FM), k-way Pairwise FM (KPM), Multi-Try FM (MTFM), and Hill-
Scanning (HS), run on the graphs from the Graph Partitioning Archive [13] in the top section, and the University of Florida Sparse Matrix Collection [16]
in the bottom section. The lowest mean edgecut achieved per graph is highlighted in bold.

24 threads are plotted relative to the runtime of Greedy using
24 threads to create 64-way partitions. HS greatly reduces the
difference in runtime with the Greedy algorithm, averaging
only 17% longer total partitioning time. Not only are RB-FM
and KPM slower when run serially, they both have limited
parallelism, resulting in substantially longer runtime using
24 threads compared to HS. RB-FM must operate serially
when making the first bisection, and cannot express p way
concurrency until after the first log p bisections. While KPM
can express up to k/2 way concurrency via edge coloring the
partition-graph GP , many of the resulting colors will have
less than k/2 edges when GP is not a complete graph, further
limiting the degree of parallelism.

Figure 2b shows the geometric mean edgecut of RB-FM,

KPM, and HS relative to Greedy using 24 threads. HS had
a geometric mean edgecut 6.3% lower than Greedy. This is
3.4% and 1.9% lower than RB-FM and KPM respectively. This
shows that not only is HS extremely fast and scales well in
terms of the number of threads used, but it also produces the
best quality among parallel refinement schemes. While RB-
FM and KPM have the ability to hill-climb, the movement of
hills is restricted to the bisection currently being refined. For
RB-FM, this is particularly restrictive as bisections are never
revisited as the algorithm recurses. In KPM, we see this have
less of an impact as the different pairs of partitions are cycled
though multiple times during refinement. HS is able to achieve
the lowest mean edgecut because each hill it identifies is free
to move to any partition to which it is connected.

 0

 5

 10

 15

 20

 25

AS365

NLR
adaptive

ldoor

Serena

audikw1

channel-500x.

dielFilterV3.

Flan_1565

nlpkkt240

geo. m
ean

R
u
n
ti

m
e
 v

s.
 G

re
e
d
y

RB-FM x24 KPM x24 HS x24

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

AS365

NLR
adaptive

ldoor

Serena

audikw1

channel-500x.

dielFilterV3.

Flan
1 565

nlpkkt240

geo. m
ean

E
d
g
e
cu

t
v
s.

 G
re

e
d
y

RB-FM x24 KPM x24 HS x24

(b)

Fig. 2: Comparison of parallel refinement schemes against
Greedy refinement using 24 threads: (a) the total partitioning
time, (b) the final edgecut.

VIII. CONCLUSION

In this paper we presented the Hill-Scanning algorithm, a
shared-memory parallel refinement algorithm for graph par-
titioning. Unlike other hill-climbing refinement algorithms,
the Hill-Scanning algorithm can efficiently parallelized, which
is quickly becoming a requirement to achieve even modest
performance on modern processors. Our strong scaling ex-
periments showed that Hill-Scanning achieves 5.7 − 16.7×
speedup when run with 24 threads, while only producing
0.52% higher edgecuts than when run serially. Compared to
parallel Greedy refinement, this is only a 17% increase in
runtime while offering a 6.3% decrease in the edgecut. This
is 6.3× faster and 1.9% lower edgecut than parallel Pairwise
FM.

ACKNOWLEDGMENT

This work was supported in part by NSF (IIS-0905220, OCI-
1048018, CNS-1162405, IIS-1247632, IIP-1414153, IIS-1447788),
Army Research Office (W911NF-14-1-0316), Intel Software and Ser-
vices Group, and the Digital Technology Center at the University of
Minnesota. Access to research and computing facilities was provided
by the Digital Technology Center and the Minnesota Supercomputing
Institute.

REFERENCES

[1] C. Fiduccia and R. Mattheyses, “A linear-time heuristic for improving
network partitions,” in Design Automation, 1982. 19th Conference on,
june 1982, pp. 175 –181.

[2] S. Dutt and W. Deng, “Vlsi circuit partitioning by cluster-removal
using iterative improvement techniques,” in Proceedings of the 1996
IEEE/ACM international conference on Computer-aided design. IEEE
Computer Society, 1997, pp. 194–200.

[3] P. Sanders and C. Schulz, “Engineering multilevel graph partitioning
algorithms,” in Algorithms - ESA 2011, ser. Lecture Notes in Computer
Science, C. Demetrescu and M. Halldrsson, Eds. Springer Berlin
/ Heidelberg, 2011, vol. 6942, pp. 469–480. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-23719-5\ 40

[4] J. Gong and S. K. Lim, “Multiway partitioning with pairwise move-
ment,” in Computer-Aided Design, 1998. ICCAD 98. Digest of Technical
Papers. 1998 IEEE/ACM International Conference on. IEEE, 1998, pp.
512–516.

[5] T. N. Bui and C. Jones, “Finding good approximate vertex and edge
partitions is np-hard,” Information Processing Letters, vol. 42, no. 3,
pp. 153 – 159, 1992.

[6] B. Hendrickson and R. Leland, “A multilevel algorithm for partitioning
graphs,” in Proceedings of the 1995 ACM/IEEE conference on
Supercomputing (CDROM), ser. Supercomputing ’95. New York,
NY, USA: ACM, 1995. [Online]. Available: http://doi.acm.org/10.1145/
224170.224228

[7] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme
for irregular graphs,” Journal of Parallel and Distributed Computing,
vol. 48, pp. 96–129, 1998.

[8] F. Pellegrini and J. Roman, “Scotch: A software package for static
mapping by dual recursive bipartitioning of process and architecture
graphs,” in Proceedings of the International Conference and Exhibition
on High-Performance Computing and Networking, ser. HPCN Europe
1996. London, UK, UK: Springer-Verlag, 1996, pp. 493–498. [Online].
Available: http://dl.acm.org/citation.cfm?id=645560.658570

[9] G. Karypis and V. Kumar, “Multilevel graph partitioning schemes,” in
ICPP (3), 1995, pp. 113–122.

[10] ——, “Analysis of multilevel graph partitioning,” in Proceedings of the
1995 ACM/IEEE conference on Supercomputing. ACM, 1995, p. 29.

[11] D. LaSalle and G. Karypis, “Efficient nested dissection for multicore
architectures,” in Euro-Par 2015, Parallel Processing, 21st International
Euro-Par Conference, ser. Lecture Notes in Computer Science, IEEE.
Springer, 2015.

[12] ——, “Multi-threaded graph partitioning,” in Parallel & Distributed
Processing (IPDPS), 2013 IEEE 27th International Symposium on.
IEEE, 2013, pp. 225–236.

[13] A. J. Soper, C. Walshaw, and M. Cross, “A Combined Evolutionary
Search and Multilevel Optimisation Approach to Graph Partitioning,” J.
Global Optimization, vol. 29, no. 2, pp. 225–241, 2004.

[14] S. Y. Chan, T. C. Ling, and E. Aubanel, “The impact of heterogeneous
multi-core clusters on graph partitioning: an empirical study,” Cluster
Computing, vol. 15, no. 3, pp. 281–302, 2012.

[15] V. Heuveline, “Hiflow 3: a flexible and hardware-aware parallel finite
element package,” in Proceedings of the 9th Workshop on Parallel/High-
Performance Object-Oriented Scientific Computing. ACM, 2010, p. 4.

[16] T. A. Davis and Y. Hu, “The university of florida sparse matrix collec-
tion,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, p. 1, 2011.

[17] C. Janna, A. Comerlati, and G. Gambolati, “A comparison of projective
and direct solvers for finite elements in elastostatics,” Advances in
Engineering Software, vol. 40, no. 8, pp. 675–685, 2009.

[18] M. Wittmann and T. Zeiser, “Technical note: Data structures of ilbdc
lattice boltzmann solver,” 2011.

[19] A. Dziekonski, A. Lamecki, and M. Mrozowski, “Tuning a hybrid gpu-
cpu v-cycle multilevel preconditioner for solving large real and complex
systems of fem equations,” Antennas and Wireless Propagation Letters,
IEEE, vol. 10, pp. 619–622, 2011.

[20] O. Schenk, A. Wächter, and M. Weiser, “Inertia-revealing precondition-
ing for large-scale nonconvex constrained optimization,” SIAM Journal
on Scientific Computing, vol. 31, no. 2, pp. 939–960, 2008.

